Pijush2023 commited on
Commit
a4c99d4
·
verified ·
1 Parent(s): 9956563

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +272 -11
app.py CHANGED
@@ -722,8 +722,9 @@ def generate_audio_elevenlabs(text):
722
  return None
723
 
724
 
725
- repo_id = "parler-tts/parler-tts-mini-v1"
726
 
 
727
  parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
728
  parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
729
  parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
@@ -791,6 +792,200 @@ def generate_audio_parler_tts(text):
791
  logging.debug(f"Audio saved to {combined_audio_path}")
792
  return combined_audio_path
793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794
 
795
 
796
 
@@ -1198,7 +1393,68 @@ def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=cur
1198
 
1199
 
1200
 
1201
- with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202
  with gr.Row():
1203
  with gr.Column():
1204
  state = gr.State()
@@ -1208,7 +1464,6 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1208
  retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
1209
  model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
1210
 
1211
- # Link the dropdown change to handle_model_choice_change
1212
  model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
1213
 
1214
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
@@ -1224,10 +1479,6 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1224
  location_output = gr.HTML()
1225
  audio_output = gr.Audio(interactive=False, autoplay=True)
1226
 
1227
- def stop_audio():
1228
- audio_output.stop()
1229
- return None
1230
-
1231
  retriever_sequence = (
1232
  retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
1233
  .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
@@ -1248,10 +1499,20 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1248
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
1249
  audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1250
 
1251
- # with gr.Column():
1252
- # weather_output = gr.HTML(value=fetch_local_weather())
1253
- # news_output = gr.HTML(value=fetch_local_news())
1254
- # events_output = gr.HTML(value=fetch_local_events())
 
 
 
 
 
 
 
 
 
 
1255
 
1256
  demo.queue()
1257
  demo.launch(share=True)
 
722
  return None
723
 
724
 
725
+ # Parler TTS integration
726
 
727
+ repo_id = "parler-tts/parler-tts-mini-v1"
728
  parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
729
  parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
730
  parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
 
792
  logging.debug(f"Audio saved to {combined_audio_path}")
793
  return combined_audio_path
794
 
795
+ # Streaming Parler-TTS with the Base Streamer
796
+
797
+ import io
798
+ import math
799
+ from queue import Queue
800
+ from threading import Thread
801
+ from typing import Optional
802
+
803
+ from transformers.generation.streamers import BaseStreamer
804
+
805
+ class ParlerTTSStreamer(BaseStreamer):
806
+ def __init__(
807
+ self,
808
+ model: ParlerTTSForConditionalGeneration,
809
+ device: Optional[str] = None,
810
+ play_steps: Optional[int] = 10,
811
+ stride: Optional[int] = None,
812
+ timeout: Optional[float] = None,
813
+ ):
814
+ self.decoder = model.decoder
815
+ self.audio_encoder = model.audio_encoder
816
+ self.generation_config = model.generation_config
817
+ self.device = device if device is not None else model.device
818
+
819
+ self.play_steps = play_steps
820
+ if stride is not None:
821
+ self.stride = stride
822
+ else:
823
+ hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
824
+ self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
825
+ self.token_cache = None
826
+ self.to_yield = 0
827
+
828
+ self.audio_queue = Queue()
829
+ self.stop_signal = None
830
+ self.timeout = timeout
831
+
832
+ def apply_delay_pattern_mask(self, input_ids):
833
+ _, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
834
+ input_ids[:, :1],
835
+ bos_token_id=self.generation_config.bos_token_id,
836
+ pad_token_id=self.generation_config.decoder_start_token_id,
837
+ max_length=input_ids.shape[-1],
838
+ )
839
+ input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
840
+
841
+ mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
842
+ input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
843
+ input_ids = input_ids[None, ...]
844
+
845
+ input_ids = input_ids.to(self.audio_encoder.device)
846
+
847
+ decode_sequentially = (
848
+ self.generation_config.bos_token_id in input_ids
849
+ or self.generation_config.pad_token_id in input_ids
850
+ or self.generation_config.eos_token_id in input_ids
851
+ )
852
+ if not decode_sequentially:
853
+ output_values = self.audio_encoder.decode(
854
+ input_ids,
855
+ audio_scales=[None],
856
+ )
857
+ else:
858
+ sample = input_ids[:, 0]
859
+ sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
860
+ sample = sample[:, :, sample_mask]
861
+ output_values = self.audio_encoder.decode(sample[None, ...], [None])
862
+
863
+ audio_values = output_values.audio_values[0, 0]
864
+ return audio_values.cpu().float().numpy()
865
+
866
+ def put(self, value):
867
+ batch_size = value.shape[0] // self.decoder.num_codebooks
868
+ if batch_size > 1:
869
+ raise ValueError("ParlerTTSStreamer only supports batch size 1")
870
+
871
+ if self.token_cache is None:
872
+ self.token_cache = value
873
+ else:
874
+ self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
875
+
876
+ if self.token_cache.shape[-1] % self.play_steps == 0:
877
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
878
+ self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
879
+ self.to_yield += len(audio_values) - self.to_yield - self.stride
880
+
881
+ def end(self):
882
+ if self.token_cache is not None:
883
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
884
+ else:
885
+ audio_values = np.zeros(self.to_yield)
886
+
887
+ self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
888
+
889
+ def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
890
+ self.audio_queue.put(audio, timeout=self.timeout)
891
+ if stream_end:
892
+ self.audio_queue.put(self.stop_signal, timeout=self.timeout)
893
+
894
+ def __iter__(self):
895
+ return self
896
+
897
+ def __next__(self):
898
+ value = self.audio_queue.get(timeout=self.timeout)
899
+ if not isinstance(value, np.ndarray) and value == self.stop_signal:
900
+ raise StopIteration()
901
+ else:
902
+ return value
903
+
904
+ def numpy_to_mp3(audio_array, sampling_rate):
905
+ if np.issubdtype(audio_array.dtype, np.floating):
906
+ max_val = np.max(np.abs(audio_array))
907
+ audio_array = (audio_array / max_val) * 32767
908
+ audio_array = audio_array.astype(np.int16)
909
+
910
+ audio_segment = AudioSegment(
911
+ audio_array.tobytes(),
912
+ frame_rate=sampling_rate,
913
+ sample_width=audio_array.dtype.itemsize,
914
+ channels=1
915
+ )
916
+
917
+ mp3_io = io.BytesIO()
918
+ audio_segment.export(mp3_io, format="mp3", bitrate="320k")
919
+
920
+ mp3_bytes = mp3_io.getvalue()
921
+ mp3_io.close()
922
+
923
+ return mp3_bytes
924
+
925
+ sampling_rate = model.audio_encoder.config.sampling_rate
926
+ frame_rate = model.audio_encoder.config.frame_rate
927
+
928
+ def generate_base(text, description, play_steps_in_s=2.0):
929
+ play_steps = int(frame_rate * play_steps_in_s)
930
+ streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
931
+
932
+ inputs = parler_tokenizer(description, return_tensors="pt").to(device)
933
+ prompt = parler_tokenizer(text, return_tensors="pt").to(device)
934
+
935
+ generation_kwargs = dict(
936
+ input_ids=inputs.input_ids,
937
+ prompt_input_ids=prompt.input_ids,
938
+ streamer=streamer,
939
+ do_sample=True,
940
+ temperature=1.0,
941
+ min_new_tokens=10,
942
+ )
943
+
944
+ set_seed(SEED)
945
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
946
+ thread.start()
947
+
948
+ for new_audio in streamer:
949
+ print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
950
+ yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
951
+
952
+ css = """
953
+ #share-btn-container {
954
+ display: flex;
955
+ padding-left: 0.5rem !important;
956
+ padding-right: 0.5rem !important;
957
+ background-color: #000000;
958
+ justify-content: center;
959
+ align-items: center;
960
+ border-radius: 9999px !important;
961
+ width: 13rem;
962
+ margin-top: 10px;
963
+ margin-left: auto;
964
+ flex: unset !important;
965
+ }
966
+ #share-btn {
967
+ all: initial;
968
+ color: #ffffff;
969
+ font-weight: 600;
970
+ cursor: pointer;
971
+ font-family: 'IBM Plex Sans', sans-serif;
972
+ margin-left: 0.5rem !important;
973
+ padding-top: 0.25rem !important;
974
+ padding-bottom: 0.25rem !important;
975
+ right:0;
976
+ }
977
+ #share-btn * {
978
+ all: unset !important;
979
+ }
980
+ #share-btn-container div:nth-child(-n+2){
981
+ width: auto !important;
982
+ min-height: 0px !important;
983
+ }
984
+ #share-btn-container .wrap {
985
+ display: none !important;
986
+ }
987
+ """
988
+
989
 
990
 
991
 
 
1393
 
1394
 
1395
 
1396
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1397
+ # with gr.Row():
1398
+ # with gr.Column():
1399
+ # state = gr.State()
1400
+
1401
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1402
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1403
+ # retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
1404
+ # model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
1405
+
1406
+ # # Link the dropdown change to handle_model_choice_change
1407
+ # model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
1408
+
1409
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1410
+
1411
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
1412
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
1413
+ # retriever_button = gr.Button("Retriever")
1414
+
1415
+ # clear_button = gr.Button("Clear")
1416
+ # clear_button.click(lambda: [None, None], outputs=[chat_input, state])
1417
+
1418
+ # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
1419
+ # location_output = gr.HTML()
1420
+ # audio_output = gr.Audio(interactive=False, autoplay=True)
1421
+
1422
+ # def stop_audio():
1423
+ # audio_output.stop()
1424
+ # return None
1425
+
1426
+ # retriever_sequence = (
1427
+ # retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
1428
+ # .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
1429
+ # .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="generate_voice_response")
1430
+ # .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
1431
+ # .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
1432
+ # )
1433
+
1434
+ # chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
1435
+ # chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
1436
+ # fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="generate_voice_response"
1437
+ # ).then(
1438
+ # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
1439
+ # ).then(
1440
+ # fn=clear_textbox, inputs=[], outputs=[chat_input]
1441
+ # )
1442
+
1443
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
1444
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1445
+
1446
+ # # with gr.Column():
1447
+ # # weather_output = gr.HTML(value=fetch_local_weather())
1448
+ # # news_output = gr.HTML(value=fetch_local_news())
1449
+ # # events_output = gr.HTML(value=fetch_local_events())
1450
+
1451
+ # demo.queue()
1452
+ # demo.launch(share=True)
1453
+
1454
+
1455
+
1456
+
1457
+ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush', css=css) as demo:
1458
  with gr.Row():
1459
  with gr.Column():
1460
  state = gr.State()
 
1464
  retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
1465
  model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
1466
 
 
1467
  model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
1468
 
1469
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
 
1479
  location_output = gr.HTML()
1480
  audio_output = gr.Audio(interactive=False, autoplay=True)
1481
 
 
 
 
 
1482
  retriever_sequence = (
1483
  retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
1484
  .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
 
1499
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
1500
  audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1501
 
1502
+ with gr.Column():
1503
+ with gr.Tab("Base"):
1504
+ with gr.Row():
1505
+ with gr.Column():
1506
+ input_text = gr.Textbox(label="Input Text", lines=2, value="Please surprise me and speak in whatever voice you enjoy.", elem_id="input_text")
1507
+ description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
1508
+ play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
1509
+ run_button = gr.Button("Generate Audio", variant="primary")
1510
+ with gr.Column():
1511
+ audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True)
1512
+
1513
+ inputs = [input_text, description, play_seconds]
1514
+ outputs = [audio_out]
1515
+ run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
1516
 
1517
  demo.queue()
1518
  demo.launch(share=True)