Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -722,8 +722,9 @@ def generate_audio_elevenlabs(text):
|
|
| 722 |
return None
|
| 723 |
|
| 724 |
|
| 725 |
-
|
| 726 |
|
|
|
|
| 727 |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
| 728 |
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 729 |
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
|
@@ -791,6 +792,200 @@ def generate_audio_parler_tts(text):
|
|
| 791 |
logging.debug(f"Audio saved to {combined_audio_path}")
|
| 792 |
return combined_audio_path
|
| 793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 794 |
|
| 795 |
|
| 796 |
|
|
@@ -1198,7 +1393,68 @@ def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=cur
|
|
| 1198 |
|
| 1199 |
|
| 1200 |
|
| 1201 |
-
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1202 |
with gr.Row():
|
| 1203 |
with gr.Column():
|
| 1204 |
state = gr.State()
|
|
@@ -1208,7 +1464,6 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
| 1208 |
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
|
| 1209 |
model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
|
| 1210 |
|
| 1211 |
-
# Link the dropdown change to handle_model_choice_change
|
| 1212 |
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
|
| 1213 |
|
| 1214 |
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
|
@@ -1224,10 +1479,6 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
| 1224 |
location_output = gr.HTML()
|
| 1225 |
audio_output = gr.Audio(interactive=False, autoplay=True)
|
| 1226 |
|
| 1227 |
-
def stop_audio():
|
| 1228 |
-
audio_output.stop()
|
| 1229 |
-
return None
|
| 1230 |
-
|
| 1231 |
retriever_sequence = (
|
| 1232 |
retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
|
| 1233 |
.then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
|
|
@@ -1248,10 +1499,20 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
| 1248 |
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
|
| 1249 |
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
|
| 1250 |
|
| 1251 |
-
|
| 1252 |
-
|
| 1253 |
-
|
| 1254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1255 |
|
| 1256 |
demo.queue()
|
| 1257 |
demo.launch(share=True)
|
|
|
|
| 722 |
return None
|
| 723 |
|
| 724 |
|
| 725 |
+
# Parler TTS integration
|
| 726 |
|
| 727 |
+
repo_id = "parler-tts/parler-tts-mini-v1"
|
| 728 |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
| 729 |
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 730 |
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
|
|
|
| 792 |
logging.debug(f"Audio saved to {combined_audio_path}")
|
| 793 |
return combined_audio_path
|
| 794 |
|
| 795 |
+
# Streaming Parler-TTS with the Base Streamer
|
| 796 |
+
|
| 797 |
+
import io
|
| 798 |
+
import math
|
| 799 |
+
from queue import Queue
|
| 800 |
+
from threading import Thread
|
| 801 |
+
from typing import Optional
|
| 802 |
+
|
| 803 |
+
from transformers.generation.streamers import BaseStreamer
|
| 804 |
+
|
| 805 |
+
class ParlerTTSStreamer(BaseStreamer):
|
| 806 |
+
def __init__(
|
| 807 |
+
self,
|
| 808 |
+
model: ParlerTTSForConditionalGeneration,
|
| 809 |
+
device: Optional[str] = None,
|
| 810 |
+
play_steps: Optional[int] = 10,
|
| 811 |
+
stride: Optional[int] = None,
|
| 812 |
+
timeout: Optional[float] = None,
|
| 813 |
+
):
|
| 814 |
+
self.decoder = model.decoder
|
| 815 |
+
self.audio_encoder = model.audio_encoder
|
| 816 |
+
self.generation_config = model.generation_config
|
| 817 |
+
self.device = device if device is not None else model.device
|
| 818 |
+
|
| 819 |
+
self.play_steps = play_steps
|
| 820 |
+
if stride is not None:
|
| 821 |
+
self.stride = stride
|
| 822 |
+
else:
|
| 823 |
+
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
|
| 824 |
+
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
| 825 |
+
self.token_cache = None
|
| 826 |
+
self.to_yield = 0
|
| 827 |
+
|
| 828 |
+
self.audio_queue = Queue()
|
| 829 |
+
self.stop_signal = None
|
| 830 |
+
self.timeout = timeout
|
| 831 |
+
|
| 832 |
+
def apply_delay_pattern_mask(self, input_ids):
|
| 833 |
+
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
| 834 |
+
input_ids[:, :1],
|
| 835 |
+
bos_token_id=self.generation_config.bos_token_id,
|
| 836 |
+
pad_token_id=self.generation_config.decoder_start_token_id,
|
| 837 |
+
max_length=input_ids.shape[-1],
|
| 838 |
+
)
|
| 839 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
|
| 840 |
+
|
| 841 |
+
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
|
| 842 |
+
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
|
| 843 |
+
input_ids = input_ids[None, ...]
|
| 844 |
+
|
| 845 |
+
input_ids = input_ids.to(self.audio_encoder.device)
|
| 846 |
+
|
| 847 |
+
decode_sequentially = (
|
| 848 |
+
self.generation_config.bos_token_id in input_ids
|
| 849 |
+
or self.generation_config.pad_token_id in input_ids
|
| 850 |
+
or self.generation_config.eos_token_id in input_ids
|
| 851 |
+
)
|
| 852 |
+
if not decode_sequentially:
|
| 853 |
+
output_values = self.audio_encoder.decode(
|
| 854 |
+
input_ids,
|
| 855 |
+
audio_scales=[None],
|
| 856 |
+
)
|
| 857 |
+
else:
|
| 858 |
+
sample = input_ids[:, 0]
|
| 859 |
+
sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
|
| 860 |
+
sample = sample[:, :, sample_mask]
|
| 861 |
+
output_values = self.audio_encoder.decode(sample[None, ...], [None])
|
| 862 |
+
|
| 863 |
+
audio_values = output_values.audio_values[0, 0]
|
| 864 |
+
return audio_values.cpu().float().numpy()
|
| 865 |
+
|
| 866 |
+
def put(self, value):
|
| 867 |
+
batch_size = value.shape[0] // self.decoder.num_codebooks
|
| 868 |
+
if batch_size > 1:
|
| 869 |
+
raise ValueError("ParlerTTSStreamer only supports batch size 1")
|
| 870 |
+
|
| 871 |
+
if self.token_cache is None:
|
| 872 |
+
self.token_cache = value
|
| 873 |
+
else:
|
| 874 |
+
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
|
| 875 |
+
|
| 876 |
+
if self.token_cache.shape[-1] % self.play_steps == 0:
|
| 877 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
| 878 |
+
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
| 879 |
+
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
| 880 |
+
|
| 881 |
+
def end(self):
|
| 882 |
+
if self.token_cache is not None:
|
| 883 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
| 884 |
+
else:
|
| 885 |
+
audio_values = np.zeros(self.to_yield)
|
| 886 |
+
|
| 887 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
|
| 888 |
+
|
| 889 |
+
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
| 890 |
+
self.audio_queue.put(audio, timeout=self.timeout)
|
| 891 |
+
if stream_end:
|
| 892 |
+
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
|
| 893 |
+
|
| 894 |
+
def __iter__(self):
|
| 895 |
+
return self
|
| 896 |
+
|
| 897 |
+
def __next__(self):
|
| 898 |
+
value = self.audio_queue.get(timeout=self.timeout)
|
| 899 |
+
if not isinstance(value, np.ndarray) and value == self.stop_signal:
|
| 900 |
+
raise StopIteration()
|
| 901 |
+
else:
|
| 902 |
+
return value
|
| 903 |
+
|
| 904 |
+
def numpy_to_mp3(audio_array, sampling_rate):
|
| 905 |
+
if np.issubdtype(audio_array.dtype, np.floating):
|
| 906 |
+
max_val = np.max(np.abs(audio_array))
|
| 907 |
+
audio_array = (audio_array / max_val) * 32767
|
| 908 |
+
audio_array = audio_array.astype(np.int16)
|
| 909 |
+
|
| 910 |
+
audio_segment = AudioSegment(
|
| 911 |
+
audio_array.tobytes(),
|
| 912 |
+
frame_rate=sampling_rate,
|
| 913 |
+
sample_width=audio_array.dtype.itemsize,
|
| 914 |
+
channels=1
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
mp3_io = io.BytesIO()
|
| 918 |
+
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
|
| 919 |
+
|
| 920 |
+
mp3_bytes = mp3_io.getvalue()
|
| 921 |
+
mp3_io.close()
|
| 922 |
+
|
| 923 |
+
return mp3_bytes
|
| 924 |
+
|
| 925 |
+
sampling_rate = model.audio_encoder.config.sampling_rate
|
| 926 |
+
frame_rate = model.audio_encoder.config.frame_rate
|
| 927 |
+
|
| 928 |
+
def generate_base(text, description, play_steps_in_s=2.0):
|
| 929 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
| 930 |
+
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
| 931 |
+
|
| 932 |
+
inputs = parler_tokenizer(description, return_tensors="pt").to(device)
|
| 933 |
+
prompt = parler_tokenizer(text, return_tensors="pt").to(device)
|
| 934 |
+
|
| 935 |
+
generation_kwargs = dict(
|
| 936 |
+
input_ids=inputs.input_ids,
|
| 937 |
+
prompt_input_ids=prompt.input_ids,
|
| 938 |
+
streamer=streamer,
|
| 939 |
+
do_sample=True,
|
| 940 |
+
temperature=1.0,
|
| 941 |
+
min_new_tokens=10,
|
| 942 |
+
)
|
| 943 |
+
|
| 944 |
+
set_seed(SEED)
|
| 945 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 946 |
+
thread.start()
|
| 947 |
+
|
| 948 |
+
for new_audio in streamer:
|
| 949 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
| 950 |
+
yield numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
|
| 951 |
+
|
| 952 |
+
css = """
|
| 953 |
+
#share-btn-container {
|
| 954 |
+
display: flex;
|
| 955 |
+
padding-left: 0.5rem !important;
|
| 956 |
+
padding-right: 0.5rem !important;
|
| 957 |
+
background-color: #000000;
|
| 958 |
+
justify-content: center;
|
| 959 |
+
align-items: center;
|
| 960 |
+
border-radius: 9999px !important;
|
| 961 |
+
width: 13rem;
|
| 962 |
+
margin-top: 10px;
|
| 963 |
+
margin-left: auto;
|
| 964 |
+
flex: unset !important;
|
| 965 |
+
}
|
| 966 |
+
#share-btn {
|
| 967 |
+
all: initial;
|
| 968 |
+
color: #ffffff;
|
| 969 |
+
font-weight: 600;
|
| 970 |
+
cursor: pointer;
|
| 971 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
| 972 |
+
margin-left: 0.5rem !important;
|
| 973 |
+
padding-top: 0.25rem !important;
|
| 974 |
+
padding-bottom: 0.25rem !important;
|
| 975 |
+
right:0;
|
| 976 |
+
}
|
| 977 |
+
#share-btn * {
|
| 978 |
+
all: unset !important;
|
| 979 |
+
}
|
| 980 |
+
#share-btn-container div:nth-child(-n+2){
|
| 981 |
+
width: auto !important;
|
| 982 |
+
min-height: 0px !important;
|
| 983 |
+
}
|
| 984 |
+
#share-btn-container .wrap {
|
| 985 |
+
display: none !important;
|
| 986 |
+
}
|
| 987 |
+
"""
|
| 988 |
+
|
| 989 |
|
| 990 |
|
| 991 |
|
|
|
|
| 1393 |
|
| 1394 |
|
| 1395 |
|
| 1396 |
+
# with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
| 1397 |
+
# with gr.Row():
|
| 1398 |
+
# with gr.Column():
|
| 1399 |
+
# state = gr.State()
|
| 1400 |
+
|
| 1401 |
+
# chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
|
| 1402 |
+
# choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
|
| 1403 |
+
# retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
|
| 1404 |
+
# model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
|
| 1405 |
+
|
| 1406 |
+
# # Link the dropdown change to handle_model_choice_change
|
| 1407 |
+
# model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
|
| 1408 |
+
|
| 1409 |
+
# gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
| 1410 |
+
|
| 1411 |
+
# chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
|
| 1412 |
+
# tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
|
| 1413 |
+
# retriever_button = gr.Button("Retriever")
|
| 1414 |
+
|
| 1415 |
+
# clear_button = gr.Button("Clear")
|
| 1416 |
+
# clear_button.click(lambda: [None, None], outputs=[chat_input, state])
|
| 1417 |
+
|
| 1418 |
+
# gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
|
| 1419 |
+
# location_output = gr.HTML()
|
| 1420 |
+
# audio_output = gr.Audio(interactive=False, autoplay=True)
|
| 1421 |
+
|
| 1422 |
+
# def stop_audio():
|
| 1423 |
+
# audio_output.stop()
|
| 1424 |
+
# return None
|
| 1425 |
+
|
| 1426 |
+
# retriever_sequence = (
|
| 1427 |
+
# retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
|
| 1428 |
+
# .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
|
| 1429 |
+
# .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="generate_voice_response")
|
| 1430 |
+
# .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
|
| 1431 |
+
# .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
|
| 1432 |
+
# )
|
| 1433 |
+
|
| 1434 |
+
# chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
|
| 1435 |
+
# chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
|
| 1436 |
+
# fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="generate_voice_response"
|
| 1437 |
+
# ).then(
|
| 1438 |
+
# fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
|
| 1439 |
+
# ).then(
|
| 1440 |
+
# fn=clear_textbox, inputs=[], outputs=[chat_input]
|
| 1441 |
+
# )
|
| 1442 |
+
|
| 1443 |
+
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
|
| 1444 |
+
# audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
|
| 1445 |
+
|
| 1446 |
+
# # with gr.Column():
|
| 1447 |
+
# # weather_output = gr.HTML(value=fetch_local_weather())
|
| 1448 |
+
# # news_output = gr.HTML(value=fetch_local_news())
|
| 1449 |
+
# # events_output = gr.HTML(value=fetch_local_events())
|
| 1450 |
+
|
| 1451 |
+
# demo.queue()
|
| 1452 |
+
# demo.launch(share=True)
|
| 1453 |
+
|
| 1454 |
+
|
| 1455 |
+
|
| 1456 |
+
|
| 1457 |
+
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush', css=css) as demo:
|
| 1458 |
with gr.Row():
|
| 1459 |
with gr.Column():
|
| 1460 |
state = gr.State()
|
|
|
|
| 1464 |
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
|
| 1465 |
model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
|
| 1466 |
|
|
|
|
| 1467 |
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
|
| 1468 |
|
| 1469 |
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
|
|
|
| 1479 |
location_output = gr.HTML()
|
| 1480 |
audio_output = gr.Audio(interactive=False, autoplay=True)
|
| 1481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1482 |
retriever_sequence = (
|
| 1483 |
retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
|
| 1484 |
.then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
|
|
|
|
| 1499 |
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
|
| 1500 |
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
|
| 1501 |
|
| 1502 |
+
with gr.Column():
|
| 1503 |
+
with gr.Tab("Base"):
|
| 1504 |
+
with gr.Row():
|
| 1505 |
+
with gr.Column():
|
| 1506 |
+
input_text = gr.Textbox(label="Input Text", lines=2, value="Please surprise me and speak in whatever voice you enjoy.", elem_id="input_text")
|
| 1507 |
+
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
| 1508 |
+
play_seconds = gr.Slider(3.0, 7.0, value=3.0, step=2, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
|
| 1509 |
+
run_button = gr.Button("Generate Audio", variant="primary")
|
| 1510 |
+
with gr.Column():
|
| 1511 |
+
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", streaming=True, autoplay=True)
|
| 1512 |
+
|
| 1513 |
+
inputs = [input_text, description, play_seconds]
|
| 1514 |
+
outputs = [audio_out]
|
| 1515 |
+
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
|
| 1516 |
|
| 1517 |
demo.queue()
|
| 1518 |
demo.launch(share=True)
|