Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -885,41 +885,41 @@ def fetch_local_news():
|
|
885 |
else:
|
886 |
return "<p>Failed to fetch local news</p>"
|
887 |
|
888 |
-
import numpy as np
|
889 |
-
import torch
|
890 |
-
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
891 |
|
892 |
-
model_id = 'openai/whisper-large-v3'
|
893 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
894 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
895 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
896 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
897 |
|
898 |
-
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
899 |
|
900 |
-
base_audio_drive = "/data/audio"
|
901 |
|
902 |
-
#Normal Code with sample rate is 44100 Hz
|
903 |
|
904 |
-
def transcribe_function(stream, new_chunk):
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
|
911 |
-
|
912 |
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
|
918 |
-
|
919 |
|
920 |
-
|
921 |
|
922 |
-
|
923 |
|
924 |
|
925 |
|
@@ -994,76 +994,76 @@ def generate_audio_elevenlabs(text):
|
|
994 |
|
995 |
# chunking audio and then Process
|
996 |
|
997 |
-
import concurrent.futures
|
998 |
-
import tempfile
|
999 |
-
import os
|
1000 |
-
import numpy as np
|
1001 |
-
import logging
|
1002 |
-
from queue import Queue
|
1003 |
-
from threading import Thread
|
1004 |
-
from scipy.io.wavfile import write as write_wav
|
1005 |
-
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
|
1006 |
-
from transformers import AutoTokenizer
|
1007 |
-
|
1008 |
-
# Ensure your device is set to CUDA
|
1009 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
1010 |
-
|
1011 |
-
repo_id = "parler-tts/parler-tts-mini-v1"
|
1012 |
-
|
1013 |
-
def generate_audio_parler_tts(text):
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
1027 |
-
|
1028 |
-
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
|
1041 |
-
|
1042 |
-
|
1043 |
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
|
1050 |
-
|
1051 |
-
|
1052 |
-
|
1053 |
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
|
1058 |
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
|
1063 |
-
|
1064 |
|
1065 |
-
|
1066 |
-
|
1067 |
|
1068 |
|
1069 |
def fetch_local_events():
|
|
|
885 |
else:
|
886 |
return "<p>Failed to fetch local news</p>"
|
887 |
|
888 |
+
# import numpy as np
|
889 |
+
# import torch
|
890 |
+
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
891 |
|
892 |
+
# model_id = 'openai/whisper-large-v3'
|
893 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
894 |
+
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
895 |
+
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
896 |
+
# processor = AutoProcessor.from_pretrained(model_id)
|
897 |
|
898 |
+
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
899 |
|
900 |
+
# base_audio_drive = "/data/audio"
|
901 |
|
902 |
+
# #Normal Code with sample rate is 44100 Hz
|
903 |
|
904 |
+
# def transcribe_function(stream, new_chunk):
|
905 |
+
# try:
|
906 |
+
# sr, y = new_chunk[0], new_chunk[1]
|
907 |
+
# except TypeError:
|
908 |
+
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
909 |
+
# return stream, "", None
|
910 |
|
911 |
+
# y = y.astype(np.float32) / np.max(np.abs(y))
|
912 |
|
913 |
+
# if stream is not None:
|
914 |
+
# stream = np.concatenate([stream, y])
|
915 |
+
# else:
|
916 |
+
# stream = y
|
917 |
|
918 |
+
# result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
919 |
|
920 |
+
# full_text = result.get("text","")
|
921 |
|
922 |
+
# return stream, full_text, result
|
923 |
|
924 |
|
925 |
|
|
|
994 |
|
995 |
# chunking audio and then Process
|
996 |
|
997 |
+
# import concurrent.futures
|
998 |
+
# import tempfile
|
999 |
+
# import os
|
1000 |
+
# import numpy as np
|
1001 |
+
# import logging
|
1002 |
+
# from queue import Queue
|
1003 |
+
# from threading import Thread
|
1004 |
+
# from scipy.io.wavfile import write as write_wav
|
1005 |
+
# from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
|
1006 |
+
# from transformers import AutoTokenizer
|
1007 |
+
|
1008 |
+
# # Ensure your device is set to CUDA
|
1009 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
1010 |
+
|
1011 |
+
# repo_id = "parler-tts/parler-tts-mini-v1"
|
1012 |
+
|
1013 |
+
# def generate_audio_parler_tts(text):
|
1014 |
+
# description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
1015 |
+
# chunk_size_in_s = 0.5
|
1016 |
+
|
1017 |
+
# # Initialize the tokenizer and model
|
1018 |
+
# parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
1019 |
+
# parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
1020 |
+
# sampling_rate = parler_model.audio_encoder.config.sampling_rate
|
1021 |
+
# frame_rate = parler_model.audio_encoder.config.frame_rate
|
1022 |
+
|
1023 |
+
# def generate(text, description, play_steps_in_s=0.5):
|
1024 |
+
# play_steps = int(frame_rate * play_steps_in_s)
|
1025 |
+
# streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps)
|
1026 |
+
|
1027 |
+
# inputs = parler_tokenizer(description, return_tensors="pt").to(device)
|
1028 |
+
# prompt = parler_tokenizer(text, return_tensors="pt").to(device)
|
1029 |
+
|
1030 |
+
# generation_kwargs = dict(
|
1031 |
+
# input_ids=inputs.input_ids,
|
1032 |
+
# prompt_input_ids=prompt.input_ids,
|
1033 |
+
# attention_mask=inputs.attention_mask,
|
1034 |
+
# prompt_attention_mask=prompt.attention_mask,
|
1035 |
+
# streamer=streamer,
|
1036 |
+
# do_sample=True,
|
1037 |
+
# temperature=1.0,
|
1038 |
+
# min_new_tokens=10,
|
1039 |
+
# )
|
1040 |
|
1041 |
+
# thread = Thread(target=parler_model.generate, kwargs=generation_kwargs)
|
1042 |
+
# thread.start()
|
1043 |
|
1044 |
+
# for new_audio in streamer:
|
1045 |
+
# if new_audio.shape[0] == 0:
|
1046 |
+
# break
|
1047 |
+
# # Save or process each audio chunk as it is generated
|
1048 |
+
# yield sampling_rate, new_audio
|
1049 |
|
1050 |
+
# audio_segments = []
|
1051 |
+
# for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
|
1052 |
+
# audio_segments.append(audio_chunk)
|
1053 |
|
1054 |
+
# temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav")
|
1055 |
+
# write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32))
|
1056 |
+
# logging.debug(f"Saved chunk to {temp_audio_path}")
|
1057 |
|
1058 |
|
1059 |
+
# # Combine all the audio chunks into one audio file
|
1060 |
+
# combined_audio = np.concatenate(audio_segments)
|
1061 |
+
# combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav")
|
1062 |
|
1063 |
+
# write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32))
|
1064 |
|
1065 |
+
# logging.debug(f"Combined audio saved to {combined_audio_path}")
|
1066 |
+
# return combined_audio_path
|
1067 |
|
1068 |
|
1069 |
def fetch_local_events():
|