Pijush2023 commited on
Commit
84adc8d
·
verified ·
1 Parent(s): 3f3507e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -787
app.py CHANGED
@@ -1,664 +1,13 @@
1
- # import gradio as gr
2
- # import requests
3
- # import os
4
- # import time
5
- # import re
6
- # import logging
7
- # import tempfile
8
- # import folium
9
- # import concurrent.futures
10
- # import torch
11
- # from PIL import Image
12
- # from datetime import datetime
13
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
- # from googlemaps import Client as GoogleMapsClient
15
- # from gtts import gTTS
16
- # from diffusers import StableDiffusionPipeline
17
- # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
- # from langchain_pinecone import PineconeVectorStore
19
- # from langchain.prompts import PromptTemplate
20
- # from langchain.chains import RetrievalQA
21
- # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
- # from langchain.agents import Tool, initialize_agent
23
- # from huggingface_hub import login
24
- # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
- # from parler_tts import ParlerTTSForConditionalGeneration
26
- # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
- # from scipy.io.wavfile import write as write_wav
28
- # from pydub import AudioSegment
29
- # from string import punctuation
30
- # import librosa
31
- # from pathlib import Path
32
- # import torchaudio
33
-
34
- # # Check if the token is already set in the environment variables
35
- # hf_token = os.getenv("HF_TOKEN")
36
- # if hf_token is None:
37
- # print("Please set your Hugging Face token in the environment variables.")
38
- # else:
39
- # login(token=hf_token)
40
-
41
- # logging.basicConfig(level=logging.DEBUG)
42
-
43
- # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
-
45
- # from pinecone import Pinecone
46
- # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
-
48
- # index_name = "birmingham-dataset"
49
- # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
- # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
-
52
- # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
-
54
- # conversational_memory = ConversationBufferWindowMemory(
55
- # memory_key='chat_history',
56
- # k=10,
57
- # return_messages=True
58
- # )
59
-
60
- # def get_current_time_and_date():
61
- # now = datetime.now()
62
- # return now.strftime("%Y-%m-%d %H:%M:%S")
63
-
64
- # current_time_and_date = get_current_time_and_date()
65
-
66
- # def fetch_local_events():
67
- # api_key = os.environ['SERP_API']
68
- # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
69
- # response = requests.get(url)
70
- # if response.status_code == 200:
71
- # events_results = response.json().get("events_results", [])
72
- # events_html = """
73
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
74
- # <style>
75
- # .event-item {
76
- # font-family: 'Verdana', sans-serif;
77
- # color: #333;
78
- # margin-bottom: 15px;
79
- # padding: 10px;
80
- # font-weight: bold;
81
- # }
82
- # .event-item a {
83
- # color: #1E90FF;
84
- # text-decoration: none;
85
- # }
86
- # .event-item a:hover {
87
- # text-decoration: underline;
88
- # }
89
- # </style>
90
- # """
91
- # for index, event in enumerate(events_results):
92
- # title = event.get("title", "No title")
93
- # date = event.get("date", "No date")
94
- # location = event.get("address", "No location")
95
- # link = event.get("link", "#")
96
- # events_html += f"""
97
- # <div class="event-item">
98
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
99
- # <p>Date: {date}<br>Location: {location}</p>
100
- # </div>
101
- # """
102
- # return events_html
103
- # else:
104
- # return "<p>Failed to fetch local events</p>"
105
-
106
- # def fetch_local_weather():
107
- # try:
108
- # api_key = os.environ['WEATHER_API']
109
- # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
110
- # response = requests.get(url)
111
- # response.raise_for_status()
112
- # jsonData = response.json()
113
-
114
- # current_conditions = jsonData.get("currentConditions", {})
115
- # temp_celsius = current_conditions.get("temp", "N/A")
116
-
117
- # if temp_celsius != "N/A":
118
- # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
119
- # else:
120
- # temp_fahrenheit = "N/A"
121
-
122
- # condition = current_conditions.get("conditions", "N/A")
123
- # humidity = current_conditions.get("humidity", "N/A")
124
-
125
- # weather_html = f"""
126
- # <div class="weather-theme">
127
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
128
- # <div class="weather-content">
129
- # <div class="weather-icon">
130
- # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
131
- # </div>
132
- # <div class="weather-details">
133
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
134
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
135
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
136
- # </div>
137
- # </div>
138
- # </div>
139
- # <style>
140
- # .weather-theme {{
141
- # animation: backgroundAnimation 10s infinite alternate;
142
- # border-radius: 10px;
143
- # padding: 10px;
144
- # margin-bottom: 15px;
145
- # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
146
- # background-size: 400% 400%;
147
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
148
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
149
- # }}
150
- # .weather-theme:hover {{
151
- # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
152
- # background-position: 100% 100%;
153
- # }}
154
- # @keyframes backgroundAnimation {{
155
- # 0% {{ background-position: 0% 50%; }}
156
- # 100% {{ background-position: 100% 50%; }}
157
- # }}
158
- # .weather-content {{
159
- # display: flex;
160
- # align-items: center;
161
- # }}
162
- # .weather-icon {{
163
- # flex: 1;
164
- # }}
165
- # .weather-details {{
166
- # flex: 3;
167
- # }}
168
- # </style>
169
- # """
170
- # return weather_html
171
- # except requests.exceptions.RequestException as e:
172
- # return f"<p>Failed to fetch local weather: {e}</p>"
173
-
174
- # def get_weather_icon(condition):
175
- # condition_map = {
176
- # "Clear": "c01d",
177
- # "Partly Cloudy": "c02d",
178
- # "Cloudy": "c03d",
179
- # "Overcast": "c04d",
180
- # "Mist": "a01d",
181
- # "Patchy rain possible": "r01d",
182
- # "Light rain": "r02d",
183
- # "Moderate rain": "r03d",
184
- # "Heavy rain": "r04d",
185
- # "Snow": "s01d",
186
- # "Thunderstorm": "t01d",
187
- # "Fog": "a05d",
188
- # }
189
- # return condition_map.get(condition, "c04d")
190
-
191
- # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
192
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
193
- # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
194
- # event type and description. Always say "It was my pleasure!" at the end of the answer.
195
- # {context}
196
- # Question: {question}
197
- # Helpful Answer:"""
198
-
199
- # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
200
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
201
- # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
202
- # {context}
203
- # Question: {question}
204
- # Helpful Answer:"""
205
-
206
- # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
207
- # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
208
-
209
- # def build_qa_chain(prompt_template):
210
- # qa_chain = RetrievalQA.from_chain_type(
211
- # llm=chat_model,
212
- # chain_type="stuff",
213
- # retriever=retriever,
214
- # chain_type_kwargs={"prompt": prompt_template}
215
- # )
216
- # tools = [
217
- # Tool(
218
- # name='Knowledge Base',
219
- # func=qa_chain,
220
- # description='Use this tool when answering general knowledge queries to get more information about the topic'
221
- # )
222
- # ]
223
- # return qa_chain, tools
224
-
225
- # def initialize_agent_with_prompt(prompt_template):
226
- # qa_chain, tools = build_qa_chain(prompt_template)
227
- # agent = initialize_agent(
228
- # agent='chat-conversational-react-description',
229
- # tools=tools,
230
- # llm=chat_model,
231
- # verbose=False,
232
- # max_iteration=5,
233
- # early_stopping_method='generate',
234
- # memory=conversational_memory
235
- # )
236
- # return agent
237
-
238
- # def generate_answer(message, choice):
239
- # logging.debug(f"generate_answer called with prompt_choice: {choice}")
240
-
241
- # if choice == "Details":
242
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
243
- # elif choice == "Conversational":
244
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
245
- # else:
246
- # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
247
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
248
- # response = agent(message)
249
-
250
- # addresses = extract_addresses(response['output'])
251
- # return response['output'], addresses
252
-
253
- # def bot(history, choice, tts_choice):
254
- # if not history:
255
- # return history
256
- # response, addresses = generate_answer(history[-1][0], choice)
257
- # history[-1][1] = ""
258
-
259
- # with concurrent.futures.ThreadPoolExecutor() as executor:
260
- # if tts_choice == "Eleven Labs":
261
- # audio_future = executor.submit(generate_audio_elevenlabs, response)
262
- # elif tts_choice == "Parler-TTS":
263
- # audio_future = executor.submit(generate_audio_parler_tts, response)
264
- # elif tts_choice == "MARS5":
265
- # audio_future = executor.submit(generate_audio_mars5, response)
266
-
267
-
268
- # for character in response:
269
- # history[-1][1] += character
270
- # time.sleep(0.05)
271
- # yield history, None
272
-
273
- # audio_path = audio_future.result()
274
- # yield history, audio_path
275
-
276
- # def add_message(history, message):
277
- # history.append((message, None))
278
- # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
279
-
280
- # def print_like_dislike(x: gr.LikeData):
281
- # print(x.index, x.value, x.liked)
282
-
283
- # def extract_addresses(response):
284
- # if not isinstance(response, str):
285
- # response = str(response)
286
- # address_patterns = [
287
- # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
288
- # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
289
- # r'([A-Z].*,\sAL\s\d{5})',
290
- # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
291
- # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
292
- # r'(\d{2}.*\sStreets)',
293
- # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
294
- # r'([a-zA-Z]\s Birmingham)'
295
- # ]
296
- # addresses = []
297
- # for pattern in address_patterns:
298
- # addresses.extend(re.findall(pattern, response))
299
- # return addresses
300
-
301
- # all_addresses = []
302
-
303
- # def generate_map(location_names):
304
- # global all_addresses
305
- # all_addresses.extend(location_names)
306
-
307
- # api_key = os.environ['GOOGLEMAPS_API_KEY']
308
- # gmaps = GoogleMapsClient(key=api_key)
309
-
310
- # m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
311
-
312
- # for location_name in all_addresses:
313
- # geocode_result = gmaps.geocode(location_name)
314
- # if geocode_result:
315
- # location = geocode_result[0]['geometry']['location']
316
- # folium.Marker(
317
- # [location['lat'], 'lng'],
318
- # tooltip=f"{geocode_result[0]['formatted_address']}"
319
- # ).add_to(m)
320
-
321
- # map_html = m._repr_html_()
322
- # return map_html
323
-
324
- # def fetch_local_news():
325
- # api_key = os.environ['SERP_API']
326
- # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
327
- # response = requests.get(url)
328
- # if response.status_code == 200:
329
- # results = response.json().get("news_results", [])
330
- # news_html = """
331
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
332
- # <style>
333
- # .news-item {
334
- # font-family: 'Verdana', sans-serif;
335
- # color: #333;
336
- # background-color: #f0f8ff;
337
- # margin-bottom: 15px;
338
- # padding: 10px;
339
- # border-radius: 5px;
340
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
341
- # font-weight: bold;
342
- # }
343
- # .news-item:hover {
344
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
345
- # background-color: #e6f7ff;
346
- # }
347
- # .news-item a {
348
- # color: #1E90FF;
349
- # text-decoration: none;
350
- # font-weight: bold;
351
- # }
352
- # .news-item a:hover {
353
- # text-decoration: underline;
354
- # }
355
- # .news-preview {
356
- # position: absolute;
357
- # display: none;
358
- # border: 1px solid #ccc;
359
- # border-radius: 5px;
360
- # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
361
- # background-color: white;
362
- # z-index: 1000;
363
- # max-width: 300px;
364
- # padding: 10px;
365
- # font-family: 'Verdana', sans-serif;
366
- # color: #333;
367
- # }
368
- # </style>
369
- # <script>
370
- # function showPreview(event, previewContent) {
371
- # var previewBox = document.getElementById('news-preview');
372
- # previewBox.innerHTML = previewContent;
373
- # previewBox.style.left = event.pageX + 'px';
374
- # previewBox.style.top = event.pageY + 'px';
375
- # previewBox.style.display = 'block';
376
- # }
377
- # function hidePreview() {
378
- # var previewBox = document.getElementById('news-preview');
379
- # previewBox.style.display = 'none';
380
- # }
381
- # </script>
382
- # <div id="news-preview" class="news-preview"></div>
383
- # """
384
- # for index, result in enumerate(results[:7]):
385
- # title = result.get("title", "No title")
386
- # link = result.get("link", "#")
387
- # snippet = result.get("snippet", "")
388
- # news_html += f"""
389
- # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
390
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
391
- # <p>{snippet}</p>
392
- # </div>
393
- # """
394
- # return news_html
395
- # else:
396
- # return "<p>Failed to fetch local news</p>"
397
-
398
- # import numpy as np
399
- # import torch
400
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
401
-
402
- # model_id = 'openai/whisper-large-v3'
403
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
404
- # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
405
- # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
406
- # processor = AutoProcessor.from_pretrained(model_id)
407
-
408
- # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
409
-
410
- # base_audio_drive = "/data/audio"
411
-
412
- # def transcribe_function(stream, new_chunk):
413
- # try:
414
- # sr, y = new_chunk[0], new_chunk[1]
415
- # except TypeError:
416
- # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
417
- # return stream, "", None
418
-
419
- # y = y.astype(np.float32) / np.max(np.abs(y))
420
-
421
- # if stream is not None:
422
- # stream = np.concatenate([stream, y])
423
- # else:
424
- # stream = y
425
-
426
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
427
-
428
- # full_text = result.get("text", "")
429
-
430
- # return stream, full_text, result
431
-
432
- # def update_map_with_response(history):
433
- # if not history:
434
- # return ""
435
- # response = history[-1][1]
436
- # addresses = extract_addresses(response)
437
- # return generate_map(addresses)
438
-
439
- # def clear_textbox():
440
- # return ""
441
-
442
- # def show_map_if_details(history,choice):
443
- # if choice in ["Details", "Conversational"]:
444
- # return gr.update(visible=True), update_map_with_response(history)
445
- # else:
446
- # return gr.update(visible=False), ""
447
-
448
- # def generate_audio_elevenlabs(text):
449
- # XI_API_KEY = os.environ['ELEVENLABS_API']
450
- # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
451
- # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
452
- # headers = {
453
- # "Accept": "application/json",
454
- # "xi-api-key": XI_API_KEY
455
- # }
456
- # data = {
457
- # "text": str(text),
458
- # "model_id": "eleven_multilingual_v2",
459
- # "voice_settings": {
460
- # "stability": 1.0,
461
- # "similarity_boost": 0.0,
462
- # "style": 0.60,
463
- # "use_speaker_boost": False
464
- # }
465
- # }
466
- # response = requests.post(tts_url, headers=headers, json=data, stream=True)
467
- # if response.ok:
468
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
469
- # for chunk in response.iter_content(chunk_size=1024):
470
- # f.write(chunk)
471
- # temp_audio_path = f.name
472
- # logging.debug(f"Audio saved to {temp_audio_path}")
473
- # return temp_audio_path
474
- # else:
475
- # logging.error(f"Error generating audio: {response.text}")
476
- # return None
477
-
478
- # repo_id = "parler-tts/parler-tts-mini-expresso"
479
-
480
- # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
481
- # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
482
- # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
483
-
484
- # SAMPLE_RATE = parler_feature_extractor.sampling_rate
485
- # SEED = 42
486
-
487
- # def preprocess(text):
488
- # number_normalizer = EnglishNumberNormalizer()
489
- # text = number_normalizer(text).strip()
490
- # if text[-1] not in punctuation:
491
- # text = f"{text}."
492
-
493
- # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
494
-
495
- # def separate_abb(chunk):
496
- # chunk = chunk.replace(".", "")
497
- # return " ".join(chunk)
498
-
499
- # abbreviations = re.findall(abbreviations_pattern, text)
500
- # for abv in abbreviations:
501
- # if abv in text:
502
- # text = text.replace(abv, separate_abb(abv))
503
- # return text
504
-
505
- # def chunk_text(text, max_length=250):
506
- # words = text.split()
507
- # chunks = []
508
- # current_chunk = []
509
- # current_length = 0
510
-
511
- # for word in words:
512
- # if current_length + len(word) + 1 <= max_length:
513
- # current_chunk.append(word)
514
- # current_length += len(word) + 1
515
- # else:
516
- # chunks.append(' '.join(current_chunk))
517
- # current_chunk = [word]
518
- # current_length = len(word) + 1
519
-
520
- # if current_chunk:
521
- # chunks.append(' '.join(current_chunk))
522
-
523
- # return chunks
524
-
525
- # def generate_audio_parler_tts(text):
526
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
527
- # chunks = chunk_text(preprocess(text))
528
- # audio_segments = []
529
-
530
- # for chunk in chunks:
531
- # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
532
- # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
533
-
534
- # set_seed(SEED)
535
- # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
536
- # audio_arr = generation.cpu().numpy().squeeze()
537
-
538
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
539
- # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
540
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
541
-
542
- # combined_audio = sum(audio_segments)
543
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
544
- # combined_audio.export(combined_audio_path, format="wav")
545
-
546
- # logging.debug(f"Audio saved to {combined_audio_path}")
547
- # return combined_audio_path
548
-
549
- # # Load the MARS5 model
550
- # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
551
-
552
- # def generate_audio_mars5(text):
553
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
554
- # kwargs_dict = {
555
- # 'temperature': 0.8,
556
- # 'top_k': -1,
557
- # 'top_p': 0.2,
558
- # 'typical_p': 1.0,
559
- # 'freq_penalty': 2.6,
560
- # 'presence_penalty': 0.4,
561
- # 'rep_penalty_window': 100,
562
- # 'max_prompt_phones': 360,
563
- # 'deep_clone': True,
564
- # 'nar_guidance_w': 3
565
- # }
566
-
567
- # chunks = chunk_text(preprocess(text))
568
- # audio_segments = []
569
-
570
- # for chunk in chunks:
571
- # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
572
- # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
573
- # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
574
-
575
-
576
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
577
- # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
578
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
579
-
580
- # combined_audio = sum(audio_segments)
581
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
582
- # combined_audio.export(combined_audio_path, format="wav")
583
-
584
- # logging.debug(f"Audio saved to {combined_audio_path}")
585
- # return combined_audio_path
586
-
587
- # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
- # pipe.to(device)
589
-
590
- # def generate_image(prompt):
591
- # with torch.cuda.amp.autocast():
592
- # image = pipe(
593
- # prompt,
594
- # num_inference_steps=28,
595
- # guidance_scale=3.0,
596
- # ).images[0]
597
- # return image
598
-
599
- # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
600
- # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
601
- # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
602
-
603
- # def update_images():
604
- # image_1 = generate_image(hardcoded_prompt_1)
605
- # image_2 = generate_image(hardcoded_prompt_2)
606
- # image_3 = generate_image(hardcoded_prompt_3)
607
- # return image_1, image_2, image_3
608
-
609
- # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
610
- # with gr.Row():
611
- # with gr.Column():
612
- # state = gr.State()
613
-
614
- # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
615
- # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
616
-
617
- # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
- # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
- # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
- # tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
- # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
- # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
- # chatbot.like(print_like_dislike, None, None)
624
- # clear_button = gr.Button("Clear")
625
- # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
626
-
627
- # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
628
- # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
629
-
630
- # with gr.Column():
631
- # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
632
- # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
633
- # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
634
-
635
- # refresh_button = gr.Button("Refresh Images")
636
- # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
637
-
638
- # demo.queue()
639
- # demo.launch(share=True)
640
-
641
-
642
-
643
-
644
-
645
-
646
-
647
-
648
-
649
-
650
-
651
- import os
652
  import gradio as gr
653
- import numpy as np
654
- import torch
655
  import requests
 
656
  import time
657
  import re
658
  import logging
659
  import tempfile
660
  import folium
661
  import concurrent.futures
 
662
  from PIL import Image
663
  from datetime import datetime
664
  from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
@@ -682,9 +31,6 @@ import librosa
682
  from pathlib import Path
683
  import torchaudio
684
 
685
- # Import the Toucan TTS dependencies
686
- from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2
687
-
688
  # Check if the token is already set in the environment variables
689
  hf_token = os.getenv("HF_TOKEN")
690
  if hf_token is None:
@@ -917,10 +263,7 @@ def bot(history, choice, tts_choice):
917
  audio_future = executor.submit(generate_audio_parler_tts, response)
918
  elif tts_choice == "MARS5":
919
  audio_future = executor.submit(generate_audio_mars5, response)
920
- elif tts_choice == "Meta Voice":
921
- audio_future = executor.submit(generate_audio_meta_voice, response)
922
- elif tts_choice == "Toucan TTS":
923
- audio_future = executor.submit(generate_audio_toucan_tts, response)
924
 
925
  for character in response:
926
  history[-1][1] += character
@@ -971,7 +314,7 @@ def generate_map(location_names):
971
  if geocode_result:
972
  location = geocode_result[0]['geometry']['location']
973
  folium.Marker(
974
- [location['lat'], location['lng']],
975
  tooltip=f"{geocode_result[0]['formatted_address']}"
976
  ).add_to(m)
977
 
@@ -1241,131 +584,6 @@ def generate_audio_mars5(text):
1241
  logging.debug(f"Audio saved to {combined_audio_path}")
1242
  return combined_audio_path
1243
 
1244
- def generate_audio_meta_voice(text):
1245
- description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
1246
- chunks = chunk_text(preprocess(text))
1247
- audio_segments = []
1248
-
1249
- for chunk in chunks:
1250
- prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
1251
- generation = parler_model.generate(prompt_input_ids=prompt.input_ids)
1252
- audio_arr = generation.cpu().numpy().squeeze()
1253
-
1254
- temp_audio_path = os.path.join(tempfile.gettempdir(), f"meta_voice_audio_{len(audio_segments)}.wav")
1255
- write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
1256
- audio_segments.append(AudioSegment.from_wav(temp_audio_path))
1257
-
1258
- combined_audio = sum(audio_segments)
1259
- combined_audio_path = os.path.join(tempfile.gettempdir(), "meta_voice_combined_audio.wav")
1260
- combined_audio.export(combined_audio_path, format="wav")
1261
-
1262
- logging.debug(f"Audio saved to {combined_audio_path}")
1263
- return combined_audio_path
1264
-
1265
- def float2pcm(sig, dtype='int16'):
1266
- """
1267
- https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
1268
- """
1269
- sig = np.asarray(sig)
1270
- if sig.dtype.kind != 'f':
1271
- raise TypeError("'sig' must be a float array")
1272
- dtype = np.dtype(dtype)
1273
- if dtype.kind not in 'iu':
1274
- raise TypeError("'dtype' must be an integer type")
1275
- i = np.iinfo(dtype)
1276
- abs_max = 2 ** (i.bits - 1)
1277
- offset = i.min + abs_max
1278
- return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)
1279
-
1280
- class TTS_Interface:
1281
- def __init__(self):
1282
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
1283
- self.model = Meta_FastSpeech2(device=self.device)
1284
- self.current_speaker = "English Speaker's Voice"
1285
- self.current_language = "English"
1286
- self.current_accent = "English"
1287
- self.language_id_lookup = {
1288
- "English" : "en",
1289
- "German" : "de",
1290
- "Greek" : "el",
1291
- "Spanish" : "es",
1292
- "Finnish" : "fi",
1293
- "Russian" : "ru",
1294
- "Hungarian" : "hu",
1295
- "Dutch" : "nl",
1296
- "French" : "fr",
1297
- 'Polish' : "pl",
1298
- 'Portuguese': "pt",
1299
- 'Italian' : "it",
1300
- }
1301
- self.speaker_path_lookup = {
1302
- "English Speaker's Voice" : "reference_audios/english.wav",
1303
- "German Speaker's Voice" : "reference_audios/german.wav",
1304
- "Greek Speaker's Voice" : "reference_audios/greek.wav",
1305
- "Spanish Speaker's Voice" : "reference_audios/spanish.wav",
1306
- "Finnish Speaker's Voice" : "reference_audios/finnish.wav",
1307
- "Russian Speaker's Voice" : "reference_audios/russian.wav",
1308
- "Hungarian Speaker's Voice" : "reference_audios/hungarian.wav",
1309
- "Dutch Speaker's Voice" : "reference_audios/dutch.wav",
1310
- "French Speaker's Voice" : "reference_audios/french.wav",
1311
- "Polish Speaker's Voice" : "reference_audios/polish.flac",
1312
- "Portuguese Speaker's Voice": "reference_audios/portuguese.flac",
1313
- "Italian Speaker's Voice" : "reference_audios/italian.flac",
1314
- }
1315
- self.model.set_utterance_embedding(self.speaker_path_lookup[self.current_speaker])
1316
-
1317
- def read(self, prompt, language, accent, speaker):
1318
- language = language.split()[0]
1319
- accent = accent.split()[0]
1320
- if self.current_language != language:
1321
- self.model.set_phonemizer_language(self.language_id_lookup[language])
1322
- self.current_language = language
1323
- if self.current_accent != accent:
1324
- self.model.set_accent_language(self.language_id_lookup[accent])
1325
- self.current_accent = accent
1326
- if self.current_speaker != speaker:
1327
- self.model.set_utterance_embedding(self.speaker_path_lookup[speaker])
1328
- self.current_speaker = speaker
1329
-
1330
- phones = self.model.text2phone.get_phone_string(prompt)
1331
- if len(phones) > 1800:
1332
- if language == "English":
1333
- prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
1334
- elif language == "German":
1335
- prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf."
1336
- elif language == "Greek":
1337
- prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη."
1338
- elif language == "Spanish":
1339
- prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes."
1340
- elif language == "Finnish":
1341
- prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan."
1342
- elif language == "Russian":
1343
- prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей."
1344
- elif language == "Hungarian":
1345
- prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre."
1346
- elif language == "Dutch":
1347
- prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen."
1348
- elif language == "French":
1349
- prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties."
1350
- elif language == 'Polish':
1351
- prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części."
1352
- elif language == 'Portuguese':
1353
- prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes."
1354
- elif language == 'Italian':
1355
- prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti."
1356
- phones = self.model.text2phone.get_phone_string(prompt)
1357
-
1358
- wav = self.model(phones)
1359
- return 48000, float2pcm(wav.cpu().numpy())
1360
-
1361
- def generate_audio_toucan_tts(text):
1362
- tts_interface = TTS_Interface()
1363
- sr, audio_arr = tts_interface.read(text, "English", "English", "English Speaker's Voice")
1364
- temp_audio_path = os.path.join(tempfile.gettempdir(), "toucan_tts_audio.wav")
1365
- write_wav(temp_audio_path, sr, audio_arr)
1366
- logging.debug(f"Audio saved to {temp_audio_path}")
1367
- return temp_audio_path
1368
-
1369
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
1370
  pipe.to(device)
1371
 
@@ -1399,7 +617,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1399
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1400
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
1401
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
1402
- tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5", "Meta Voice", "Toucan TTS"], value="Eleven Labs")
1403
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
1404
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
1405
  chatbot.like(print_like_dislike, None, None)
@@ -1427,6 +645,18 @@ demo.launch(share=True)
1427
 
1428
 
1429
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
 
1431
  # import gradio as gr
1432
  # import requests
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
2
  import requests
3
+ import os
4
  import time
5
  import re
6
  import logging
7
  import tempfile
8
  import folium
9
  import concurrent.futures
10
+ import torch
11
  from PIL import Image
12
  from datetime import datetime
13
  from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
 
31
  from pathlib import Path
32
  import torchaudio
33
 
 
 
 
34
  # Check if the token is already set in the environment variables
35
  hf_token = os.getenv("HF_TOKEN")
36
  if hf_token is None:
 
263
  audio_future = executor.submit(generate_audio_parler_tts, response)
264
  elif tts_choice == "MARS5":
265
  audio_future = executor.submit(generate_audio_mars5, response)
266
+
 
 
 
267
 
268
  for character in response:
269
  history[-1][1] += character
 
314
  if geocode_result:
315
  location = geocode_result[0]['geometry']['location']
316
  folium.Marker(
317
+ [location['lat'], 'lng'],
318
  tooltip=f"{geocode_result[0]['formatted_address']}"
319
  ).add_to(m)
320
 
 
584
  logging.debug(f"Audio saved to {combined_audio_path}")
585
  return combined_audio_path
586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
  pipe.to(device)
589
 
 
617
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
+ tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
  chatbot.like(print_like_dislike, None, None)
 
645
 
646
 
647
 
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
 
661
  # import gradio as gr
662
  # import requests