Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -391,27 +391,24 @@ chain_neo4j = (
|
|
391 |
|
392 |
# Short Prompt Template for Phi-3.5 Proprietary Model
|
393 |
|
394 |
-
phi_short_template = f"""
|
395 |
-
As an expert on Birmingham, Alabama, I will provide concise, accurate, and informative responses to your queries based on 128 token limit . Given the sunny weather today, {current_date}, feel free to ask me anything you need to know about the city.
|
396 |
-
Provide only the direct answer to the question without any follow-up questions.
|
397 |
-
{{context}}
|
398 |
-
Question: {{question}}
|
399 |
-
Answer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
"""
|
401 |
|
402 |
|
403 |
-
import re
|
404 |
-
|
405 |
-
def clean_response(response_text):
|
406 |
-
# Remove any metadata-like information and focus on the main content
|
407 |
-
# Removes "Document(metadata=...)" and other similar patterns
|
408 |
-
cleaned_response = re.sub(r'Document\(metadata=.*?\),?\s*', '', response_text, flags=re.DOTALL)
|
409 |
-
cleaned_response = re.sub(r'page_content=".*?"\),?', '', cleaned_response, flags=re.DOTALL)
|
410 |
-
cleaned_response = re.sub(r'\[.*?\]', '', cleaned_response, flags=re.DOTALL) # Remove content in brackets
|
411 |
-
cleaned_response = re.sub(r'\s+', ' ', cleaned_response).strip()
|
412 |
-
#Remove any unwanted follow-up questions or unnecessary text
|
413 |
-
cleaned_response = re.sub(r'Question:.*\nAnswer:', '', response_text, flags=re.DOTALL).strip()
|
414 |
-
return cleaned_response
|
415 |
|
416 |
|
417 |
import re
|
@@ -495,6 +492,78 @@ def clean_response(response_text):
|
|
495 |
|
496 |
|
497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
def generate_answer(message, choice, retrieval_mode, selected_model):
|
499 |
logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
|
500 |
|
@@ -535,7 +604,8 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
535 |
context_documents = retriever.get_relevant_documents(message)
|
536 |
context = "\n".join([doc.page_content for doc in context_documents])
|
537 |
|
538 |
-
|
|
|
539 |
|
540 |
logging.debug(f"Phi-3.5 Prompt: {prompt}")
|
541 |
|
@@ -570,8 +640,6 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
570 |
|
571 |
|
572 |
|
573 |
-
|
574 |
-
|
575 |
def bot(history, choice, tts_choice, retrieval_mode, model_choice):
|
576 |
if not history:
|
577 |
return history
|
|
|
391 |
|
392 |
# Short Prompt Template for Phi-3.5 Proprietary Model
|
393 |
|
394 |
+
# phi_short_template = f"""
|
395 |
+
# As an expert on Birmingham, Alabama, I will provide concise, accurate, and informative responses to your queries based on 128 token limit . Given the sunny weather today, {current_date}, feel free to ask me anything you need to know about the city.
|
396 |
+
# Provide only the direct answer to the question without any follow-up questions.
|
397 |
+
# {{context}}
|
398 |
+
# Question: {{question}}
|
399 |
+
# Answer:
|
400 |
+
# """
|
401 |
+
|
402 |
+
phi_custom_template = """
|
403 |
+
<|system|>
|
404 |
+
You are a helpful assistant.<|end|>
|
405 |
+
<|user|>
|
406 |
+
Context: {context}
|
407 |
+
Question: {question}<|end|>
|
408 |
+
<|assistant|>
|
409 |
"""
|
410 |
|
411 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
|
414 |
import re
|
|
|
492 |
|
493 |
|
494 |
|
495 |
+
# def generate_answer(message, choice, retrieval_mode, selected_model):
|
496 |
+
# logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
|
497 |
+
|
498 |
+
# try:
|
499 |
+
# # Handle hotel-related queries
|
500 |
+
# if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
|
501 |
+
# response = fetch_google_hotels()
|
502 |
+
# return response, extract_addresses(response)
|
503 |
+
|
504 |
+
# # Handle restaurant-related queries
|
505 |
+
# if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
|
506 |
+
# response = fetch_yelp_restaurants()
|
507 |
+
# return response, extract_addresses(response)
|
508 |
+
|
509 |
+
# # Handle flight-related queries
|
510 |
+
# if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
|
511 |
+
# response = fetch_google_flights()
|
512 |
+
# return response, extract_addresses(response)
|
513 |
+
|
514 |
+
# if retrieval_mode == "VDB":
|
515 |
+
# if selected_model == chat_model:
|
516 |
+
# retriever = gpt_retriever
|
517 |
+
# prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
|
518 |
+
# context = retriever.get_relevant_documents(message)
|
519 |
+
# prompt = prompt_template.format(context=context, question=message)
|
520 |
+
|
521 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
522 |
+
# llm=chat_model,
|
523 |
+
# chain_type="stuff",
|
524 |
+
# retriever=retriever,
|
525 |
+
# chain_type_kwargs={"prompt": prompt_template}
|
526 |
+
# )
|
527 |
+
# response = qa_chain({"query": message})
|
528 |
+
# return response['result'], extract_addresses(response['result'])
|
529 |
+
|
530 |
+
# elif selected_model == phi_pipe:
|
531 |
+
# retriever = phi_retriever
|
532 |
+
# context_documents = retriever.get_relevant_documents(message)
|
533 |
+
# context = "\n".join([doc.page_content for doc in context_documents])
|
534 |
+
|
535 |
+
# prompt = phi_short_template.format(context=context, question=message)
|
536 |
+
|
537 |
+
# logging.debug(f"Phi-3.5 Prompt: {prompt}")
|
538 |
+
|
539 |
+
# response = selected_model(prompt, **{
|
540 |
+
# "max_new_tokens": 160, # Increased to handle longer responses
|
541 |
+
# "return_full_text": True,
|
542 |
+
# "temperature": 0.7, # Adjusted to avoid cutting off
|
543 |
+
# "do_sample": True, # Allow sampling to increase response diversity
|
544 |
+
# })
|
545 |
+
|
546 |
+
# if response:
|
547 |
+
# generated_text = response[0]['generated_text']
|
548 |
+
# logging.debug(f"Phi-3.5 Response: {generated_text}")
|
549 |
+
# cleaned_response = clean_response(generated_text)
|
550 |
+
# return cleaned_response, extract_addresses(cleaned_response)
|
551 |
+
# else:
|
552 |
+
# logging.error("Phi-3.5 did not return any response.")
|
553 |
+
# return "No response generated.", []
|
554 |
+
|
555 |
+
# elif retrieval_mode == "KGF":
|
556 |
+
# response = chain_neo4j.invoke({"question": message})
|
557 |
+
# return response, extract_addresses(response)
|
558 |
+
# else:
|
559 |
+
# return "Invalid retrieval mode selected.", []
|
560 |
+
|
561 |
+
# except Exception as e:
|
562 |
+
# logging.error(f"Error in generate_answer: {e}")
|
563 |
+
# return "Sorry, I encountered an error while processing your request.", []
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
def generate_answer(message, choice, retrieval_mode, selected_model):
|
568 |
logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
|
569 |
|
|
|
604 |
context_documents = retriever.get_relevant_documents(message)
|
605 |
context = "\n".join([doc.page_content for doc in context_documents])
|
606 |
|
607 |
+
# Integrating the custom context and question into the base prompt template
|
608 |
+
prompt = phi_base_template.format(context=context, question=message)
|
609 |
|
610 |
logging.debug(f"Phi-3.5 Prompt: {prompt}")
|
611 |
|
|
|
640 |
|
641 |
|
642 |
|
|
|
|
|
643 |
def bot(history, choice, tts_choice, retrieval_mode, model_choice):
|
644 |
if not history:
|
645 |
return history
|