Pijush2023 commited on
Commit
342b204
·
verified ·
1 Parent(s): 61aa32a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -213
app.py CHANGED
@@ -311,41 +311,6 @@ chain_neo4j = (
311
 
312
 
313
 
314
- # def generate_answer(message, choice, retrieval_mode):
315
- # logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
316
-
317
- # # Check if the question is about hotels
318
- # if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
319
- # response = fetch_google_hotels()
320
- # return response, extract_addresses(response)
321
-
322
- # # Check if the question is about restaurants
323
- # if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
324
- # response = fetch_yelp_restaurants()
325
- # return response, extract_addresses(response)
326
- # # Check if the question is about flights
327
- # if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
328
- # response = fetch_google_flights()
329
- # return response, extract_addresses(response)
330
-
331
- # prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
332
-
333
- # if retrieval_mode == "VDB":
334
- # qa_chain = RetrievalQA.from_chain_type(
335
- # llm=chat_model,
336
- # chain_type="stuff",
337
- # retriever=retriever,
338
- # chain_type_kwargs={"prompt": prompt_template}
339
- # )
340
- # response = qa_chain({"query": message})
341
- # logging.debug(f"Vector response: {response}")
342
- # return response['result'], extract_addresses(response['result'])
343
- # elif retrieval_mode == "KGF":
344
- # response = chain_neo4j.invoke({"question": message})
345
- # logging.debug(f"Knowledge-Graph response: {response}")
346
- # return response, extract_addresses(response)
347
- # else:
348
- # return "Invalid retrieval mode selected.", []
349
 
350
 
351
 
@@ -424,30 +389,7 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
424
  return "Sorry, I encountered an error while processing your request.", []
425
 
426
 
427
- # def bot(history, choice, tts_choice, retrieval_mode):
428
- # if not history:
429
- # return history
430
-
431
- # response, addresses = generate_answer(history[-1][0], choice, retrieval_mode)
432
- # history[-1][1] = ""
433
-
434
- # with concurrent.futures.ThreadPoolExecutor() as executor:
435
- # if tts_choice == "Alpha":
436
- # audio_future = executor.submit(generate_audio_elevenlabs, response)
437
- # elif tts_choice == "Beta":
438
- # audio_future = executor.submit(generate_audio_parler_tts, response)
439
- # elif tts_choice == "Gamma":
440
- # audio_future = executor.submit(generate_audio_mars5, response)
441
-
442
- # for character in response:
443
- # history[-1][1] += character
444
- # time.sleep(0.05)
445
- # yield history, None
446
-
447
- # audio_path = audio_future.result()
448
- # yield history, audio_path
449
 
450
- # history.append([response, None]) # Ensure the response is added in the correct format
451
 
452
 
453
 
@@ -797,70 +739,6 @@ def generate_audio_parler_tts(text):
797
 
798
 
799
 
800
-
801
-
802
- # # Load the MARS5 model
803
- # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
804
-
805
- # def generate_audio_mars5(text):
806
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
807
- # kwargs_dict = {
808
- # 'temperature': 0.2,
809
- # 'top_k': -1,
810
- # 'top_p': 0.2,
811
- # 'typical_p': 1.0,
812
- # 'freq_penalty': 2.6,
813
- # 'presence_penalty': 0.4,
814
- # 'rep_penalty_window': 100,
815
- # 'max_prompt_phones': 360,
816
- # 'deep_clone': True,
817
- # 'nar_guidance_w': 3
818
- # }
819
-
820
- # chunks = chunk_text(preprocess(text))
821
- # audio_segments = []
822
-
823
- # for chunk in chunks:
824
- # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
825
- # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
826
- # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
827
-
828
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
829
- # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
830
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
831
-
832
- # combined_audio = sum(audio_segments)
833
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
834
- # combined_audio.export(combined_audio_path, format="wav")
835
-
836
- # logging.debug(f"Audio saved to {combined_audio_path}")
837
- # return combined_audio_path
838
-
839
- # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
840
- # pipe.to(device)
841
-
842
- # def generate_image(prompt):
843
- # with torch.cuda.amp.autocast():
844
- # image = pipe(
845
- # prompt,
846
- # num_inference_steps=28,
847
- # guidance_scale=3.0,
848
- # ).images[0]
849
- # return image
850
-
851
- # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
852
- # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
853
- # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
854
-
855
- # def update_images():
856
- # image_1 = generate_image(hardcoded_prompt_1)
857
- # image_2 = generate_image(hardcoded_prompt_2)
858
- # image_3 = generate_image(hardcoded_prompt_3)
859
- # return image_1, image_2, image_3
860
-
861
-
862
-
863
-
864
  def fetch_local_events():
865
  api_key = os.environ['SERP_API']
866
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
@@ -1189,90 +1067,6 @@ def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=cur
1189
 
1190
  return flight_info
1191
 
1192
-
1193
-
1194
-
1195
-
1196
-
1197
-
1198
-
1199
-
1200
-
1201
-
1202
- # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1203
- # with gr.Row():
1204
- # with gr.Column():
1205
- # state = gr.State()
1206
-
1207
- # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1208
- # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1209
- # retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
1210
-
1211
- # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1212
-
1213
- # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
1214
- # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1215
- # retriever_button = gr.Button("Retriever")
1216
-
1217
- # clear_button = gr.Button("Clear")
1218
- # clear_button.click(lambda:[None,None] ,outputs=[chat_input, state])
1219
-
1220
- # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
1221
- # location_output = gr.HTML()
1222
-
1223
- # # Define a single audio component
1224
- # audio_output = gr.Audio(interactive=False, autoplay=True)
1225
-
1226
- # def stop_audio():
1227
- # audio_output.stop()
1228
- # return None
1229
-
1230
- # # Define the sequence of actions for the "Retriever" button
1231
- # retriever_sequence = (
1232
- # retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output],api_name="Ask_Retriever")
1233
- # .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query")
1234
- # .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output],api_name="generate_voice_response" )
1235
- # .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
1236
- # .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
1237
- # )
1238
-
1239
- # # Link the "Enter" key (submit event) to the same sequence of actions
1240
- # chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
1241
- # chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query").then(
1242
- # fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
1243
- # ).then(
1244
- # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
1245
- # ).then(
1246
- # fn=clear_textbox, inputs=[], outputs=[chat_input]
1247
- # )
1248
-
1249
- # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
1250
- # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1251
-
1252
- # # Handle retrieval mode change
1253
- # retrieval_mode.change(fn=handle_retrieval_mode_change, inputs=retrieval_mode, outputs=[choice, choice])
1254
-
1255
- # with gr.Column():
1256
- # weather_output = gr.HTML(value=fetch_local_weather())
1257
- # news_output = gr.HTML(value=fetch_local_news())
1258
- # events_output = gr.HTML(value=fetch_local_events())
1259
- # # restaurant_output=gr.HTML(value=fetch_yelp_restaurants())
1260
-
1261
-
1262
-
1263
-
1264
- # with gr.Column():
1265
- # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
1266
- # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
1267
- # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
1268
-
1269
- # refresh_button = gr.Button("Refresh Images")
1270
- # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
1271
-
1272
-
1273
- # demo.queue()
1274
- # demo.launch(share=True)
1275
-
1276
  with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1277
  with gr.Row():
1278
  with gr.Column():
@@ -1327,13 +1121,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1327
  news_output = gr.HTML(value=fetch_local_news())
1328
  events_output = gr.HTML(value=fetch_local_events())
1329
 
1330
- # with gr.Column():
1331
- # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
1332
- # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
1333
- # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
1334
-
1335
- # refresh_button = gr.Button("Refresh Images")
1336
- # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
1337
 
1338
  demo.queue()
1339
  demo.launch(share=True)
 
311
 
312
 
313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
 
315
 
316
 
 
389
  return "Sorry, I encountered an error while processing your request.", []
390
 
391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392
 
 
393
 
394
 
395
 
 
739
 
740
 
741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742
  def fetch_local_events():
743
  api_key = os.environ['SERP_API']
744
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
 
1067
 
1068
  return flight_info
1069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
  with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1071
  with gr.Row():
1072
  with gr.Column():
 
1121
  news_output = gr.HTML(value=fetch_local_news())
1122
  events_output = gr.HTML(value=fetch_local_events())
1123
 
1124
+
 
 
 
 
 
 
1125
 
1126
  demo.queue()
1127
  demo.launch(share=True)