Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -750,7 +750,7 @@ from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
|
|
750 |
from transformers import AutoTokenizer
|
751 |
from threading import Thread
|
752 |
|
753 |
-
repo_id = "parler-tts/parler-tts-mini-v1"
|
754 |
|
755 |
|
756 |
|
@@ -820,26 +820,52 @@ from transformers import AutoTokenizer
|
|
820 |
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
|
821 |
from scipy.io.wavfile import write as write_wav
|
822 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
823 |
|
824 |
def generate_audio_parler_tts(text):
|
825 |
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
826 |
|
827 |
chunk_size_in_s = 0.3 # Smaller chunk size for lower latency
|
828 |
-
|
829 |
-
# Initialize the tokenizer and model
|
830 |
-
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
831 |
-
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
832 |
-
|
833 |
sampling_rate = parler_model.audio_encoder.config.sampling_rate
|
834 |
frame_rate = parler_model.audio_encoder.config.frame_rate
|
835 |
|
836 |
play_steps = int(frame_rate * chunk_size_in_s)
|
837 |
|
838 |
def generate_chunks(text, description):
|
839 |
-
streamer = ParlerTTSStreamer(parler_model, device=
|
840 |
|
841 |
-
inputs = parler_tokenizer(description, return_tensors="pt").to(
|
842 |
-
prompt = parler_tokenizer(text, return_tensors="pt").to(
|
843 |
|
844 |
generation_kwargs = dict(
|
845 |
input_ids=inputs.input_ids,
|
|
|
750 |
from transformers import AutoTokenizer
|
751 |
from threading import Thread
|
752 |
|
753 |
+
# repo_id = "parler-tts/parler-tts-mini-v1"
|
754 |
|
755 |
|
756 |
|
|
|
820 |
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
|
821 |
from scipy.io.wavfile import write as write_wav
|
822 |
import logging
|
823 |
+
import torch
|
824 |
+
|
825 |
+
# Set up device and dtype
|
826 |
+
torch_device = "cuda:0" # Use "mps" for Mac or "cpu" if CUDA is unavailable
|
827 |
+
torch_dtype = torch.bfloat16
|
828 |
+
|
829 |
+
# Set model name and other configurations
|
830 |
+
model_name = "parler-tts/parler-tts-mini-v1"
|
831 |
+
attn_implementation = "eager" # Options: "eager", "sdpa", "flash_attention_2"
|
832 |
+
compile_mode = "default" # Options: "default", "reduce-overhead"
|
833 |
+
max_length = 50 # Set padding max length
|
834 |
+
|
835 |
+
# Load the model with efficient attention and compile optimizations
|
836 |
+
parler_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
837 |
+
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(
|
838 |
+
model_name,
|
839 |
+
attn_implementation=attn_implementation
|
840 |
+
).to(torch_device, dtype=torch_dtype)
|
841 |
+
|
842 |
+
# Compile the forward pass for faster generation
|
843 |
+
parler_model.generation_config.cache_implementation = "static"
|
844 |
+
parler_model.forward = torch.compile(parler_model.forward, mode=compile_mode)
|
845 |
+
|
846 |
+
# Warmup to optimize the model after compilation
|
847 |
+
inputs = parler_tokenizer("This is for compilation", return_tensors="pt", padding="max_length", max_length=max_length).to(torch_device)
|
848 |
+
model_kwargs = {**inputs, "prompt_input_ids": inputs.input_ids, "prompt_attention_mask": inputs.attention_mask}
|
849 |
+
|
850 |
+
n_steps = 1 if compile_mode == "default" else 2
|
851 |
+
for _ in range(n_steps):
|
852 |
+
_ = parler_model.generate(**model_kwargs)
|
853 |
+
|
854 |
|
855 |
def generate_audio_parler_tts(text):
|
856 |
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
857 |
|
858 |
chunk_size_in_s = 0.3 # Smaller chunk size for lower latency
|
|
|
|
|
|
|
|
|
|
|
859 |
sampling_rate = parler_model.audio_encoder.config.sampling_rate
|
860 |
frame_rate = parler_model.audio_encoder.config.frame_rate
|
861 |
|
862 |
play_steps = int(frame_rate * chunk_size_in_s)
|
863 |
|
864 |
def generate_chunks(text, description):
|
865 |
+
streamer = ParlerTTSStreamer(parler_model, device=torch_device, play_steps=play_steps)
|
866 |
|
867 |
+
inputs = parler_tokenizer(description, return_tensors="pt").to(torch_device)
|
868 |
+
prompt = parler_tokenizer(text, return_tensors="pt").to(torch_device)
|
869 |
|
870 |
generation_kwargs = dict(
|
871 |
input_ids=inputs.input_ids,
|