IT2091024v2 / app.py
Pijush2023's picture
Update app.py
5714b0e verified
raw
history blame
21.4 kB
import os
import re
import time
import requests
import logging
import folium
import gradio as gr
import tempfile
import torch
import numpy as np
from gtts import gTTS
from googlemaps import Client as GoogleMapsClient
from diffusers import StableDiffusion3Pipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent
# Set up logging
logging.basicConfig(level=logging.DEBUG)
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "omaha-details"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
# Initialize ChatOpenAI model
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
temperature=0, model='gpt-4o')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Define prompt templates
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and the date is 17th June 2024, use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and the date is 17th June 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Define the retrieval QA chain
def build_qa_chain(prompt_template):
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
tools = [
Tool(
name='Knowledge Base',
func=qa_chain,
description='Use this tool when answering general knowledge queries to get more information about the topic'
)
]
return qa_chain, tools
# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
qa_chain, tools = build_qa_chain(prompt_template)
agent = initialize_agent(
agent='chat-conversational-react-description',
tools=tools,
llm=chat_model,
verbose=False,
max_iteration=5,
early_stopping_method='generate',
memory=conversational_memory
)
return agent
# Define the function to generate answers
def generate_answer(message, choice):
logging.debug(f"generate_answer called with prompt_choice: {choice}")
if choice == "Details":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
elif choice == "Conversational":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
else:
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
response = agent(message)
# Extract addresses for mapping regardless of the choice
addresses = extract_addresses(response['output'])
return response['output'], addresses
def bot(history, choice):
if not history:
return history
response, addresses = generate_answer(history[-1][0], choice)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
if addresses:
return history, addresses
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def extract_addresses(response):
if not isinstance(response, str):
response = str(response)
address_patterns = [
r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,\sNE\s\d{5})',
r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
r'(\d{2}.*\sStreets)',
r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
]
addresses = []
for pattern in address_patterns:
addresses.extend(re.findall(pattern, response))
return addresses
all_addresses = []
def generate_map(location_names):
global all_addresses
all_addresses.extend(location_names)
api_key = os.environ['GOOGLEMAPS_API_KEY']
gmaps = GoogleMapsClient(key=api_key)
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
for location_name in all_addresses:
geocode_result = gmaps.geocode(location_name)
if geocode_result:
location = geocode_result[0]['geometry']['location']
folium.Marker(
[location['lat'], location['lng']],
tooltip=f"{geocode_result[0]['formatted_address']}"
).add_to(m)
map_html = m._repr_html_()
return map_html
def fetch_local_news():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_news&q=ohama headline&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("news_results", [])
news_html = """
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today Headlines</h2>
<style>
.news-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.news-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.news-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.news-item a:hover {
text-decoration: underline;
}
.news-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('news-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('news-preview');
previewBox.style.display = 'none';
}
</script>
<div id="news-preview" class="news-preview"></div>
"""
for index, result in enumerate(results[:7]):
title = result.get("title", "No title")
link = result.get("link", "#")
snippet = result.get("snippet", "")
news_html += f"""
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>{snippet}</p>
</div>
"""
return news_html
else:
return "<p>Failed to fetch local news</p>"
def fetch_local_events():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
events_results = response.json().get("events_results", [])
events_html = """
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
<style>
.event-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.event-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.event-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.event-item a:hover {
text-decoration: underline;
}
.event-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('event-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('event-preview');
previewBox.style.display = 'none';
}
</script>
<div id="event-preview" class="event-preview"></div>
"""
for index, event in enumerate(events_results):
title = event.get("title", "No title")
date = event.get("date", "No date")
location = event.get("address", "No location")
link = event.get("link", "#")
events_html += f"""
<div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>Date: {date}<br>Location: {location}</p>
</div>
"""
return events_html
else:
return "<p>Failed to fetch local events</p>"
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp = current_conditions.get("temp", "N/A")
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"""
<div class="weather-theme">
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
<div class="weather-content">
<div class="weather-icon">
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
</div>
<div class="weather-details">
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp}°C</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
</div>
</div>
</div>
<style>
.weather-theme {{
animation: backgroundAnimation 10s infinite alternate;
border: 1px solid #ddd;
border-radius: 10px;
padding: 10px;
margin-bottom: 15px;
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
background-size: 400% 400%;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
transition: box-shadow 0.3s ease, background-color 0.3s ease;
}}
.weather-theme:hover {{
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
background-position: 100% 100%;
}}
@keyframes backgroundAnimation {{
0% {{ background-position: 0% 50%; }}
100% {{ background-position: 100% 50%; }}
}}
.weather-content {{
display: flex;
align-items: center;
}}
.weather-icon {{
flex: 1;
}}
.weather-details {{
flex: 3;
}}
</style>
"""
return weather_html
except requests.exceptions.RequestException as e:
return f"<p>Failed to fetch local weather: {e}</p>"
def get_weather_icon(condition):
condition_map = {
"Clear": "c01d",
"Partly Cloudy": "c02d",
"Cloudy": "c03d",
"Overcast": "c04d",
"Mist": "a01d",
"Patchy rain possible": "r01d",
"Light rain": "r02d",
"Moderate rain": "r03d",
"Heavy rain": "r04d",
"Snow": "s01d",
"Thunderstorm": "t01d",
"Fog": "a05d",
}
return condition_map.get(condition, "c01d")
def update_map_with_response(history):
if not history:
return ""
response = history[-1][1]
addresses = extract_addresses(response)
return generate_map(addresses)
def clear_textbox():
return ""
def show_map_if_details(history,choice):
if choice in ["Details", "Conversational"]:
return gr.update(visible=True), update_map_with_response(history)
else:
return gr.update(visible(False), "")
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'SHZHI20rSPDR3iE8SvZ0' # Replace with your voice ID
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 0.7,
"similarity_boost": 0.5,
"style": 0.50, # Adjust style for more romantic tone
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
temp_audio_path = f.name
logging.debug(f"Audio saved to {temp_audio_path}")
return temp_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Stable Diffusion setup
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
def generate_image(prompt):
image = pipe(
prompt,
negative_prompt="",
num_inference_steps=28,
guidance_scale=7.0,
).images[0]
return image
# Hardcoded prompt for image generation
hardcoded_prompt = "A cat holding a sign that says hello world"
# Gradio Blocks interface
with gr.Blocks(theme='rawrsor1/Everforest') as demo:
with gr.Row():
with gr.Column():
gr.HTML('''
<div style="animation: fadeIn 2s ease-in-out infinite alternate;">
<h1 style="font-size: 4em; text-align: center; color: #4CAF50;">Welcome to Omaha Events</h1>
</div>
<style>
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
</style>
''')
chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False)
with gr.Column():
weather_output = gr.HTML(value=fetch_local_weather())
with gr.Column():
news_output = gr.HTML(value=fetch_local_news())
def setup_ui():
state = gr.State()
with gr.Row():
with gr.Column():
gr.Markdown("<h1>Choose the prompt</h1>", elem_id="prompt-markdown")
choice = gr.Radio(label="Choose a prompt", choices=["Details", "Conversational"], value="Details")
with gr.Column(): # Larger scale for the right column
gr.Markdown("<h1>Enter the query / Voice Output</h1>", elem_id="query-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="Transcription")
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, [chatbot, choice], chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
clear_button = gr.Button("Clear")
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
with gr.Column(): # Smaller scale for the left column
gr.Markdown("<h1>Stream your Voice</h1>", elem_id="voice-markdown")
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
with gr.Row():
with gr.Column():
gr.Markdown("<h1>Locate the Events</h1>", elem_id="location-markdown")
location_output = gr.HTML()
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
with gr.Column():
gr.Markdown("<h1>Listen the audio</h1>", elem_id="audio-markdown")
audio_output = gr.Audio()
bot_msg_audio = bot_msg.then(lambda history: generate_audio_elevenlabs(history[-1][1]), chatbot, audio_output)
with gr.Column():
gr.Markdown("<h1>Local Events</h1>", elem_id="events-markdown")
news_output = gr.HTML(value=fetch_local_events())
with gr.Column():
gr.Markdown("<h1>Generated Image</h1>", elem_id="image-markdown")
image_output = gr.Image(value=generate_image(hardcoded_prompt))
setup_ui()
demo.queue()
demo.launch(share=True)