Spaces:
Paused
Paused
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.DEBUG) | |
from langchain_openai import OpenAIEmbeddings | |
import os | |
import re | |
import folium | |
import gradio as gr | |
import time | |
import requests | |
from googlemaps import Client as GoogleMapsClient | |
from gtts import gTTS | |
import tempfile | |
import string | |
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY']) | |
from pinecone import Pinecone, ServerlessSpec | |
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY']) | |
index_name = "omaha-details" | |
from langchain_pinecone import PineconeVectorStore | |
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings) | |
retriever = vectorstore.as_retriever(search_kwargs={'k': 5}) | |
from langchain_openai import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain.chains.conversation.memory import ConversationBufferWindowMemory | |
from langchain.agents import Tool, initialize_agent | |
# Build prompt | |
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska.Based on todays weather is sunny bright day and date is 17th june 2024 , Use the following pieces of context, | |
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end.If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. | |
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and | |
event type and description. Always say "It was my pleasure!" at the end of the answer. | |
{context} | |
Question: {question} | |
Helpful Answer:""" | |
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska.Based on todays weather is sunny bright day and date is 17th june 2024 ,take the location or address but don't show the location or address on the output prompts Use the following pieces of context, | |
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end.If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. | |
Keep the answer short and sweet crisp.Always say "It was my pleasure!" at the end of the answer. | |
{context} | |
Question: {question} | |
Helpful Answer:""" | |
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1) | |
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2) | |
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], | |
temperature=0, model='gpt-4o') | |
conversational_memory = ConversationBufferWindowMemory( | |
memory_key='chat_history', | |
k=10, | |
return_messages=True | |
) | |
# Define the retrieval QA chain | |
def build_qa_chain(prompt_template): | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=chat_model, | |
chain_type="stuff", | |
retriever=retriever, | |
chain_type_kwargs={"prompt": prompt_template} | |
) | |
tools = [ | |
Tool( | |
name='Knowledge Base', | |
func=qa_chain, | |
description='use this tool when answering general knowledge queries to get more information about the topic' | |
) | |
] | |
return qa_chain, tools | |
# Define the agent initializer | |
def initialize_agent_with_prompt(prompt_template): | |
qa_chain, tools = build_qa_chain(prompt_template) | |
agent = initialize_agent( | |
agent='chat-conversational-react-description', | |
tools=tools, | |
llm=chat_model, | |
verbose=False, | |
max_iteration=5, | |
early_stopping_method='generate', | |
memory=conversational_memory | |
) | |
return agent | |
# Define the function to generate answers | |
def generate_answer(message, choice): | |
logging.debug(f"generate_answer called with prompt_choice: {choice}") | |
if choice == "Details": | |
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1) | |
elif choice == "Conversational": | |
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2) | |
else: | |
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'") | |
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2) | |
response = agent(message) | |
# Extract addresses for mapping regardless of the choice | |
addresses = extract_addresses(response['output']) | |
return response['output'], addresses | |
def bot(history, choice): | |
if not history: | |
return history | |
response = generate_answer(history[-1][0], choice) | |
history[-1][1] = "" | |
for character in response: | |
history[-1][1] += character | |
time.sleep(0.05) | |
yield history | |
def add_message(history, message): | |
history.append((message, None)) | |
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False) | |
def print_like_dislike(x: gr.LikeData): | |
print(x.index, x.value, x.liked) | |
# Function to extract addresses from the chatbot's response | |
def extract_addresses(response): | |
if not isinstance(response, str): | |
response = str(response) | |
address_pattern_1 = r'([A-Z].*,\sOmaha,\sNE\s\d{5})' | |
address_pattern_2 = r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})' | |
address_pattern_3 = r'([A-Z].*,\sNE\s\d{5})' | |
address_pattern_4 = r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})' | |
address_pattern_5 = r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})' | |
address_pattern_6 = r'(\d{2}.*\sStreets)' | |
address_pattern_7 = r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})' | |
addresses = re.findall(address_pattern_1, response) + re.findall(address_pattern_2, response) + \ | |
re.findall(address_pattern_3, response) + re.findall(address_pattern_4, response) + \ | |
re.findall(address_pattern_5, response) + re.findall(address_pattern_6, response) + \ | |
re.findall(address_pattern_7, response) | |
return addresses | |
# Store all found addresses | |
all_addresses = [] | |
# Map generation function using Google Maps Geocoding API | |
def generate_map(location_names): | |
global all_addresses | |
all_addresses.extend(location_names) | |
api_key = os.environ['GOOGLEMAPS_API_KEY'] | |
gmaps = GoogleMapsClient(key=api_key) | |
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12) | |
for location_name in all_addresses: | |
geocode_result = gmaps.geocode(location_name) | |
if geocode_result: | |
location = geocode_result[0]['geometry']['location'] | |
folium.Marker( | |
[location['lat'], location['lng']], | |
tooltip=f"{geocode_result[0]['formatted_address']}" | |
).add_to(m) | |
map_html = m._repr_html_() | |
return map_html | |
# Function to fetch local news | |
def fetch_local_news(): | |
api_key = os.environ['SERP_API'] | |
url = f'https://serpapi.com/search.json?engine=google_news&q=ohama headline&api_key={api_key}' | |
response = requests.get(url) | |
if response.status_code == 200: | |
results = response.json().get("news_results", []) | |
news_html = """ | |
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today Headlines</h2> | |
<style> | |
.news-item { | |
font-family: 'Verdana', sans-serif; | |
color: #333; | |
background-color: #f0f8ff; | |
margin-bottom: 15px; | |
padding: 10px; | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
transition: box-shadow 0.3s ease, background-color 0.3s ease; | |
font-weight: bold; | |
} | |
.news-item:hover { | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
background-color: #e6f7ff; | |
} | |
.news-item a { | |
color: #1E90FF; | |
text-decoration: none; | |
font-weight: bold; | |
} | |
.news-item a:hover { | |
text-decoration: underline; | |
} | |
.news-preview { | |
position: absolute; | |
display: none; | |
border: 1px solid #ccc; | |
border-radius: 5px; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); | |
background-color: white; | |
z-index: 1000; | |
max-width: 300px; | |
padding: 10px; | |
font-family: 'Verdana', sans-serif; | |
color: #333; | |
} | |
</style> | |
<script> | |
function showPreview(event, previewContent) { | |
var previewBox = document.getElementById('news-preview'); | |
previewBox.innerHTML = previewContent; | |
previewBox.style.left = event.pageX + 'px'; | |
previewBox.style.top = event.pageY + 'px'; | |
previewBox.style.display = 'block'; | |
} | |
function hidePreview() { | |
var previewBox = document.getElementById('news-preview'); | |
previewBox.style.display = 'none'; | |
} | |
</script> | |
<div id="news-preview" class="news-preview"></div> | |
""" | |
for index, result in enumerate(results[:7]): | |
title = result.get("title", "No title") | |
link = result.get("link", "#") | |
snippet = result.get("snippet", "") | |
news_html += f""" | |
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()"> | |
<a href='{link}' target='_blank'>{index + 1}. {title}</a> | |
<p>{snippet}</p> | |
</div> | |
""" | |
return news_html | |
else: | |
return "<p>Failed to fetch local news</p>" | |
# Function to get the current weather | |
def get_current_weather(): | |
try: | |
api_key = os.environ['WEATHER_API'] | |
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}' | |
response = requests.get(url) | |
response.raise_for_status() | |
jsonData = response.json() | |
current_conditions = jsonData.get("currentConditions", {}) | |
temp = current_conditions.get("temp", "N/A") | |
condition = current_conditions.get("conditions", "N/A") | |
return f"{temp}°C and {condition}" | |
except requests.exceptions.RequestException as e: | |
logging.error(f"Failed to fetch local weather: {e}") | |
return "N/A" | |
# Function to fetch local events | |
def fetch_local_events(): | |
api_key = os.environ['SERP_API'] | |
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}' | |
response = requests.get(url) | |
if response.status_code == 200: | |
events_results = response.json().get("events_results", []) | |
events_html = """ | |
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2> | |
<style> | |
.event-item { | |
font-family: 'Verdana', sans-serif; | |
color: #333; | |
background-color: #f0f8ff; | |
margin-bottom: 15px; | |
padding: 10px; | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
transition: box-shadow 0.3s ease, background-color 0.3s ease; | |
font-weight: bold; | |
} | |
.event-item:hover { | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
background-color: #e6f7ff; | |
} | |
.event-item a { | |
color: #1E90FF; | |
text-decoration: none; | |
font-weight: bold; | |
} | |
.event-item a:hover { | |
text-decoration: underline; | |
} | |
.event-preview { | |
position: absolute; | |
display: none; | |
border: 1px solid #ccc; | |
border-radius: 5px; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); | |
background-color: white; | |
z-index: 1000; | |
max-width: 300px; | |
padding: 10px; | |
font-family: 'Verdana', sans-serif; | |
color: #333; | |
} | |
</style> | |
<script> | |
function showPreview(event, previewContent) { | |
var previewBox = document.getElementById('event-preview'); | |
previewBox.innerHTML = previewContent; | |
previewBox.style.left = event.pageX + 'px'; | |
previewBox.style.top = event.pageY + 'px'; | |
previewBox.style.display = 'block'; | |
} | |
function hidePreview() { | |
var previewBox = document.getElementById('event-preview'); | |
previewBox.style.display = 'none'; | |
} | |
</script> | |
<div id="event-preview" class="event-preview"></div> | |
""" | |
for index, event in enumerate(events_results): | |
title = event.get("title", "No title") | |
date = event.get("date", "No date") | |
location = event.get("address", "No location") | |
link = event.get("link", "#") | |
events_html += f""" | |
<div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()"> | |
<a href='{link}' target='_blank'>{index + 1}. {title}</a> | |
<p>Date: {date}<br>Location: {location}</p> | |
</div> | |
""" | |
return events_html | |
else: | |
return "<p>Failed to fetch local events</p>" | |
# Function to fetch local weather | |
def fetch_local_weather(): | |
try: | |
api_key = os.environ['WEATHER_API'] | |
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}' | |
response = requests.get(url) | |
response.raise_for_status() | |
jsonData = response.json() | |
current_conditions = jsonData.get("currentConditions", {}) | |
temp = current_conditions.get("temp", "N/A") | |
condition = current_conditions.get("conditions", "N/A") | |
humidity = current_conditions.get("humidity", "N/A") | |
weather_html = f""" | |
<div class="weather-theme"> | |
<h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2> | |
<div class="weather-content"> | |
<div class="weather-icon"> | |
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;"> | |
</div> | |
<div class="weather-details"> | |
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp}°C</p> | |
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p> | |
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p> | |
</div> | |
</div> | |
</div> | |
<style> | |
.weather-theme {{ | |
animation: backgroundAnimation 10s infinite alternate; | |
border: 1px solid #ddd; | |
border-radius: 10px; | |
padding: 10px; | |
margin-bottom: 15px; | |
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666); | |
background-size: 400% 400%; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
transition: box-shadow 0.3s ease, background-color 0.3s ease; | |
}} | |
.weather-theme:hover {{ | |
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2); | |
background-position: 100% 100%; | |
}} | |
@keyframes backgroundAnimation {{ | |
0% {{ background-position: 0% 50%; }} | |
100% {{ background-position: 100% 50%; }} | |
}} | |
.weather-content {{ | |
display: flex; | |
align-items: center; | |
}} | |
.weather-icon {{ | |
flex: 1; | |
}} | |
.weather-details {{ | |
flex: 3; | |
}} | |
</style> | |
""" | |
return weather_html | |
except requests.exceptions.RequestException as e: | |
return f"<p>Failed to fetch local weather: {e}</p>" | |
def get_weather_icon(condition): | |
condition_map = { | |
"Clear": "c01d", | |
"Partly Cloudy": "c02d", | |
"Cloudy": "c03d", | |
"Overcast": "c04d", | |
"Mist": "a01d", | |
"Patchy rain possible": "r01d", | |
"Light rain": "r02d", | |
"Moderate rain": "r03d", | |
"Heavy rain": "r04d", | |
"Snow": "s01d", | |
"Thunderstorm": "t01d", | |
"Fog": "a05d", | |
} | |
return condition_map.get(condition, "c01d") | |
# Voice Control | |
import numpy as np | |
import torch | |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
model_id = 'openai/whisper-large-v3' | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, | |
#low_cpu_mem_usage=True, | |
use_safetensors=True).to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
# Optimized ASR pipeline | |
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True) | |
base_audio_drive = "/data/audio" | |
import numpy as np | |
def transcribe_function(stream, new_chunk): | |
try: | |
sr, y = new_chunk[0], new_chunk[1] | |
except TypeError: | |
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}") | |
return stream, "", None | |
y = y.astype(np.float32) / np.max(np.abs(y)) | |
if stream is not None: | |
stream = np.concatenate([stream, y]) | |
else: | |
stream = y | |
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False) | |
full_text = result.get("text", "") | |
return stream, full_text, result | |
# Map Retrieval Function for location finder | |
def update_map_with_response(history): | |
if not history: | |
return "" | |
response = history[-1][1] | |
addresses = extract_addresses(response) | |
return generate_map(addresses) | |
def clear_textbox(): | |
return "" | |
def show_map_if_details(history,choice): | |
if choice in ["Details", "Conversational"]: | |
return gr.update(visible=True), update_map_with_response(history) | |
else: | |
return gr.update(visible=False), "" | |
#return gr.update(visible(False), "") | |
def generate_audio_elevenlabs(text): | |
XI_API_KEY = os.environ['ELEVENLABS_API'] | |
VOICE_ID = 'SHZHI20rSPDR3iE8SvZ0' # Replace with your voice ID | |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream" | |
headers = { | |
"Accept": "application/json", | |
"xi-api-key": XI_API_KEY | |
} | |
data = { | |
"text": str(text), | |
"model_id": "eleven_multilingual_v2", | |
"voice_settings": { | |
"stability": 0.7, | |
"similarity_boost": 0.5, | |
"style": 0.50, # Adjust style for more romantic tone | |
"use_speaker_boost": False | |
} | |
} | |
response = requests.post(tts_url, headers=headers, json=data, stream=True) | |
if response.ok: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: | |
for chunk in response.iter_content(chunk_size=1024): | |
f.write(chunk) | |
temp_audio_path = f.name | |
logging.debug(f"Audio saved to {temp_audio_path}") | |
return temp_audio_path | |
else: | |
logging.error(f"Error generating audio: {response.text}") | |
return None | |
# Gradio Blocks interface | |
with gr.Blocks(theme='rawrsor1/Everforest') as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML(''' | |
<div style="animation: fadeIn 2s ease-in-out infinite alternate;"> | |
<h1 style="font-size: 4em; text-align: center; color: #4CAF50;">Welcome to Omaha Events</h1> | |
</div> | |
<style> | |
@keyframes fadeIn { | |
from { opacity: 0; } | |
to { opacity: 1; } | |
} | |
</style> | |
''') | |
chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False) | |
with gr.Column(): | |
weather_output = gr.HTML(value=fetch_local_weather()) | |
with gr.Column(): | |
news_output = gr.HTML(value=fetch_local_news()) | |
def setup_ui(): | |
state = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("<h1>Choose the prompt</h1>", elem_id="prompt-markdown") | |
choice = gr.Radio(label="Choose a prompt", choices=["Details", "Conversational"], value="Details") | |
with gr.Column(): # Larger scale for the right column | |
gr.Markdown("<h1>Enter the query / Voice Output</h1>", elem_id="query-markdown") | |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="Transcription") | |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) | |
bot_msg = chat_msg.then(bot, [chatbot, choice], chatbot, api_name="bot_response") | |
bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False), None, [chat_input]) | |
chatbot.like(print_like_dislike, None, None) | |
clear_button = gr.Button("Clear") | |
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input) | |
with gr.Column(): # Smaller scale for the left column | |
gr.Markdown("<h1>Stream your Voice</h1>", elem_id="voice-markdown") | |
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy') | |
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("<h1>Locate the Events</h1>", elem_id="location-markdown") | |
location_output = gr.HTML() | |
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output]) | |
with gr.Column(): | |
gr.Markdown("<h1>Listen the audio</h1>", elem_id="audio-markdown") | |
audio_output = gr.Audio() | |
#bot_msg.then(generate_audio_elevenlabs, chatbot, audio_output) | |
bot_msg_audio = bot_msg.then(lambda history: generate_audio_elevenlabs(history[-1][1]), chatbot, audio_output) | |
with gr.Column(): | |
gr.Markdown("<h1>Local Events</h1>", elem_id="events-markdown") | |
news_output = gr.HTML(value=fetch_local_events()) | |
setup_ui() | |
demo.queue() | |
demo.launch(share=True) | |