File size: 24,768 Bytes
e5a569c
 
 
 
 
 
 
 
 
 
ae178ae
 
34a1950
 
ae178ae
34a1950
 
ae178ae
 
34a1950
ae178ae
34a1950
ae178ae
34a1950
ae178ae
34a1950
e5a569c
7bd6901
34a1950
 
 
 
 
 
 
7bd6901
03b0b37
 
 
 
 
 
 
 
 
 
 
 
 
34a1950
 
7bd6901
34a1950
 
7bd6901
34a1950
 
 
7bd6901
5c60299
34a1950
 
7bd6901
34a1950
 
 
7bd6901
34a1950
 
 
 
 
7bd6901
34a1950
 
 
7bd6901
34a1950
 
7bd6901
34a1950
 
5c60299
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c60299
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd6901
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd6901
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd6901
34a1950
7bd6901
34a1950
7bd6901
34a1950
5c60299
 
34a1950
 
 
 
 
7bd6901
5c60299
 
34a1950
 
 
 
7bd6901
34a1950
 
7bd6901
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd6901
34a1950
 
 
 
 
 
 
 
7bd6901
34a1950
 
 
7bd6901
e5a569c
34a1950
 
 
 
7bd6901
34a1950
 
e5a569c
 
 
 
7bd6901
34a1950
 
 
 
7bd6901
34a1950
 
7bd6901
34a1950
 
 
7bd6901
34a1950
 
7bd6901
34a1950
 
 
 
e270c05
 
 
 
 
34a1950
e270c05
e4fdd0c
34a1950
 
 
 
 
 
 
 
 
 
 
7bd6901
34a1950
 
7bd6901
122f59e
7bd6901
34a1950
 
 
 
 
fc72b2d
34a1950
 
7bd6901
34a1950
 
7bd6901
34a1950
 
5c60299
34a1950
 
 
 
531ab3a
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a569c
 
7bd6901
34a1950
 
 
 
 
 
 
7bd6901
34a1950
 
7bd6901
34a1950
7bd6901
34a1950
7bd6901
34a1950
 
 
 
 
 
7bd6901
34a1950
7bd6901
34a1950
 
 
 
7bd6901
34a1950
7bd6901
34a1950
7bd6901
34a1950
7bd6901
34a1950
 
 
 
 
 
7bd6901
34a1950
 
7bd6901
34a1950
 
 
 
9bacc62
7bd6901
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd6901
e5a569c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34a1950
 
 
7bd6901
34a1950
 
 
 
 
 
 
 
7bd6901
34a1950
5c60299
34a1950
 
7bd6901
34a1950
 
 
 
 
7bd6901
6fa3d6f
9bacc62
6fa3d6f
 
 
 
 
 
e5a569c
6fa3d6f
 
 
 
e5a569c
6fa3d6f
 
 
 
 
 
 
 
9bacc62
6fa3d6f
 
 
9bacc62
6fa3d6f
 
 
 
 
 
 
 
 
 
7a0b2af
6a652dd
6fa3d6f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import subprocess
import sys

def install_parler_tts():
    subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/huggingface/parler-tts.git"])

# Call the function to install parler-tts
install_parler_tts()


import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusion3Pipeline
import soundfile as sf

from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent
from huggingface_hub import login

# Check if the token is already set in the environment variables
hf_token = os.getenv("HF_TOKEN")

if hf_token is None:
    # If the token is not set, prompt for it (this should be done securely)
    print("Please set your Hugging Face token in the environment variables.")
else:
    # Login using the token
    login(token=hf_token)

# Your application logic goes here
print("Logged in successfully to Hugging Face Hub!")

# Set up logging
logging.basicConfig(level=logging.DEBUG)

# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

index_name = "birmingham-dataset"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

# Initialize ChatOpenAI model
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
                        temperature=0, model='gpt-4o')

conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

def get_current_time_and_date():
    now = datetime.now()
    return now.strftime("%Y-%m-%d %H:%M:%S")

# Example usage
current_time_and_date = get_current_time_and_date()

def fetch_local_events():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'

    response = requests.get(url)
    if response.status_code == 200:
        events_results = response.json().get("events_results", [])
        events_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
        <style>
            .event-item {
                font-family: 'Verdana', sans-serif;
                color: #333;
                margin-bottom: 15px;
                padding: 10px;
                font-weight: bold;
            }
            .event-item a {
                color: #1E90FF;
                text-decoration: none;
            }
            .event-item a:hover {
                text-decoration: underline;
            }
        </style>
        """
        for index, event in enumerate(events_results):
            title = event.get("title", "No title")
            date = event.get("date", "No date")
            location = event.get("address", "No location")
            link = event.get("link", "#")
            events_html += f"""
            <div class="event-item">
                <a href='{link}' target='_blank'>{index + 1}. {title}</a>
                <p>Date: {date}<br>Location: {location}</p>
            </div>
            """
        return events_html
    else:
        return "<p>Failed to fetch local events</p>"

def fetch_local_weather():
    try:
        api_key = os.environ['WEATHER_API']
        url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
        response = requests.get(url)
        response.raise_for_status()
        jsonData = response.json()
        
        current_conditions = jsonData.get("currentConditions", {})
        temp_celsius = current_conditions.get("temp", "N/A")
        
        if temp_celsius != "N/A":
            temp_fahrenheit = int((temp_celsius * 9/5) + 32)
        else:
            temp_fahrenheit = "N/A"
            
        condition = current_conditions.get("conditions", "N/A")
        humidity = current_conditions.get("humidity", "N/A")

        weather_html = f"""
        <div class="weather-theme">
            <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
            <div class="weather-content">
                <div class="weather-icon">
                    <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
                </div>
                <div class="weather-details">
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
                </div>
            </div>
        </div>
        <style>
            .weather-theme {{
                animation: backgroundAnimation 10s infinite alternate;
                border-radius: 10px;
                padding: 10px;
                margin-bottom: 15px;
                background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
                background-size: 400% 400%;
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
            }}
            .weather-theme:hover {{
                box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
                background-position: 100% 100%;
            }}
            @keyframes backgroundAnimation {{
                0% {{ background-position: 0% 50%; }}
                100% {{ background-position: 100% 50%; }}
            }}
            .weather-content {{
                display: flex;
                align-items: center;
            }}
            .weather-icon {{
                flex: 1;
            }}
            .weather-details {{
                flex: 3;
            }}
        </style>
        """
        return weather_html
    except requests.exceptions.RequestException as e:
        return f"<p>Failed to fetch local weather: {e}</p>"

def get_weather_icon(condition):
    condition_map = {
        "Clear": "c01d",
        "Partly Cloudy": "c02d",
        "Cloudy": "c03d",
        "Overcast": "c04d",
        "Mist": "a01d",
        "Patchy rain possible": "r01d",
        "Light rain": "r02d",
        "Moderate rain": "r03d",
        "Heavy rain": "r04d",
        "Snow": "s01d",
        "Thunderstorm": "t01d",
        "Fog": "a05d",
    }
    return condition_map.get(condition, "c04d")

# Update prompt templates to include fetched details

current_time_and_date = get_current_time_and_date()

# Define prompt templates
template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context, 
memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""

template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context, 
memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""

QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# Define the retrieval QA chain
def build_qa_chain(prompt_template):
    qa_chain = RetrievalQA.from_chain_type(
        llm=chat_model,
        chain_type="stuff",
        retriever=retriever,
        chain_type_kwargs={"prompt": prompt_template}
    )
    tools = [
        Tool(
            name='Knowledge Base',
            func=qa_chain,
            description='Use this tool when answering general knowledge queries to get more information about the topic'
        )
    ]
    return qa_chain, tools

# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
    qa_chain, tools = build_qa_chain(prompt_template)
    agent = initialize_agent(
        agent='chat-conversational-react-description',
        tools=tools,
        llm=chat_model,
        verbose=False,
        max_iteration=5,
        early_stopping_method='generate',
        memory=conversational_memory
    )
    return agent

# Define the function to generate answers
def generate_answer(message, choice):
    logging.debug(f"generate_answer called with prompt_choice: {choice}")
    
    if choice == "Details":
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
    elif choice == "Conversational":
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
    else:
        logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
    response = agent(message)

    # Extract addresses for mapping regardless of the choice
    addresses = extract_addresses(response['output'])
    return response['output'], addresses

def bot(history, choice, tts_model):
    if not history:
        return history
    response, addresses = generate_answer(history[-1][0], choice)
    history[-1][1] = ""
    
    # Generate audio for the entire response in a separate thread
    with concurrent.futures.ThreadPoolExecutor() as executor:
        if tts_model == "ElevenLabs":
            audio_future = executor.submit(generate_audio_elevenlabs, response)
        else:
            audio_future = executor.submit(generate_audio_parler_tts, response)
        
        for character in response:
            history[-1][1] += character
            time.sleep(0.05)  # Adjust the speed of text appearance
            yield history, None
        
        audio_path = audio_future.result()
        yield history, audio_path

def add_message(history, message):
    history.append((message, None))
    return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def extract_addresses(response):
    if not isinstance(response, str):
        response = str(response)
    address_patterns = [
        r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
        r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,\sAL\s\d{5})',
        r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
        r'(\d{2}.*\sStreets)',
        r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})'
        r'([a-zA-Z]\s Birmingham)'
    ]
    addresses = []
    for pattern in address_patterns:
        addresses.extend(re.findall(pattern, response))
    return addresses

all_addresses = []

def generate_map(location_names):
    global all_addresses
    all_addresses.extend(location_names)
    
    api_key = os.environ['GOOGLEMAPS_API_KEY']
    gmaps = GoogleMapsClient(key=api_key)
    
    m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
    
    for location_name in all_addresses:
        geocode_result = gmaps.geocode(location_name)
        if geocode_result:
            location = geocode_result[0]['geometry']['location']
            folium.Marker(
                [location['lat'], location['lng']],
                tooltip=f"{geocode_result[0]['formatted_address']}"
            ).add_to(m)
    
    map_html = m._repr_html_()
    return map_html

def fetch_local_news():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
    response = requests.get(url)
    if response.status_code == 200:
        results = response.json().get("news_results", [])
        news_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
        <style>
            .news-item {
                font-family: 'Verdana', sans-serif;
                color: #333;
                background-color: #f0f8ff;
                margin-bottom: 15px;
                padding: 10px;
                border-radius: 5px;
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
                font-weight: bold;
            }
            .news-item:hover {
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                background-color: #e6f7ff;
            }
            .news-item a {
                color: #1E90FF;
                text-decoration: none;
                font-weight: bold;
            }
            .news-item a:hover {
                text-decoration: underline;
            }
            .news-preview {
                position: absolute;
                display: none;
                border: 1px solid #ccc;
                border-radius: 5px;
                box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
                background-color: white;
                z-index: 1000;
                max-width: 300px;
                padding: 10px;
                font-family: 'Verdana', sans-serif;
                color: #333;
            }
        </style>
        <script>
            function showPreview(event, previewContent) {
                var previewBox = document.getElementById('news-preview');
                previewBox.innerHTML = previewContent;
                previewBox.style.left = event.pageX + 'px';
                previewBox.style.top = event.pageY + 'px';
                previewBox.style.display = 'block';
            }
            function hidePreview() {
                var previewBox = document.getElementById('news-preview');
                previewBox.style.display = 'none';
            }
        </script>
        <div id="news-preview" class="news-preview"></div>
        """
        for index, result in enumerate(results[:7]):
            title = result.get("title", "No title")
            link = result.get("link", "#")
            snippet = result.get("snippet", "")
            news_html += f"""
            <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
                <a href='{link}' target='_blank'>{index + 1}. {title}</a>
                <p>{snippet}</p>
            </div>
            """
        return news_html
    else:
        return "<p>Failed to fetch local news</p>"

# Voice Control
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer

model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
                                                  #low_cpu_mem_usage=True,
                                                  use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)

# Optimized ASR pipeline
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

base_audio_drive = "/data/audio"

import numpy as np

def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    y = y.astype(np.float32) / np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

    full_text = result.get("text", "")
    
    return stream, full_text, result

def update_map_with_response(history):
    if not history:
        return ""
    response = history[-1][1]
    addresses = extract_addresses(response)
    return generate_map(addresses)

def clear_textbox():
    return "" 

def show_map_if_details(history,choice):
    if choice in ["Details", "Conversational"]:
        return gr.update(visible=True), update_map_with_response(history)
    else:
        return gr.update(visible=False), ""

def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'  # Replace with your voice ID
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,  # Adjust style for more romantic tone
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                f.write(chunk)
            temp_audio_path = f.name
        logging.debug(f"Audio saved to {temp_audio_path}")
        return temp_audio_path
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None

def generate_audio_parler_tts(text):
    model_id = 'parler-tts/parler_tts_mini_v0.1'
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    model = ParlerTTSForConditionalGeneration.from_pretrained(model_id).to(device)
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."

    input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
    prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)

    generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
    audio_arr = generation.cpu().numpy().squeeze()
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        sf.write(f.name, audio_arr, model.config.sampling_rate)
        temp_audio_path = f.name

    logging.debug(f"Audio saved to {temp_audio_path}")
    return temp_audio_path

# Stable Diffusion setup
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")

def generate_image(prompt):
    image = pipe(
        prompt,
        negative_prompt="",
        num_inference_steps=28,
        guidance_scale=3.0,
    ).images[0]
    return image

# Hardcoded prompt for image generation
hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in th night, michael mann style in omaha enticing the consumer to buy this product"
hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."

def update_images():
    image_1 = generate_image(hardcoded_prompt_1)
    image_2 = generate_image(hardcoded_prompt_2)
    image_3 = generate_image(hardcoded_prompt_3)
    return image_1, image_2, image_3

with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
    
    with gr.Row():
        with gr.Column():
            state = gr.State()
            
            chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
            choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
            tts_choice = gr.Radio(label="Select TTS Model", choices=["ElevenLabs", "Parler TTS"], value="Parler TTS")
            
            gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
            chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
            chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
            bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
            bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
            chatbot.like(print_like_dislike, None, None)
            clear_button = gr.Button("Clear")
            clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
           
            
            audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
            audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")

            gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
            location_output = gr.HTML()
            bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
        
        with gr.Column():
            weather_output = gr.HTML(value=fetch_local_weather())
            news_output = gr.HTML(value=fetch_local_news())
            news_output = gr.HTML(value=fetch_local_events())
            
        with gr.Column():
            
            image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
            image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
            image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)


            refresh_button = gr.Button("Refresh Images")
            refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
     
demo.queue()
demo.launch(share=True)