File size: 104,816 Bytes
a2add61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
a2add61
7f3430b
 
 
a2add61
7f3430b
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
 
 
 
 
 
7f3430b
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
7f3430b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2add61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
# import gradio as gr
# import requests
# import os
# import time
# import re
# import logging
# import tempfile
# import folium
# import concurrent.futures
# import torch
# from PIL import Image
# from datetime import datetime
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# from googlemaps import Client as GoogleMapsClient
# from gtts import gTTS
# from diffusers import StableDiffusionPipeline
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
# from langchain_pinecone import PineconeVectorStore
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.chains.conversation.memory import ConversationBufferWindowMemory
# from huggingface_hub import login
# from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
# from parler_tts import ParlerTTSForConditionalGeneration
# from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
# from scipy.io.wavfile import write as write_wav
# from pydub import AudioSegment
# from string import punctuation
# import librosa
# from pathlib import Path
# import torchaudio
# import numpy as np
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline


# # Neo4j imports
# from langchain.chains import GraphCypherQAChain
# from langchain_community.graphs import Neo4jGraph
# from langchain_community.document_loaders import HuggingFaceDatasetLoader
# from langchain_text_splitters import CharacterTextSplitter
# from langchain_experimental.graph_transformers import LLMGraphTransformer
# from langchain_core.prompts import ChatPromptTemplate
# from langchain_core.pydantic_v1 import BaseModel, Field
# from langchain_core.messages import AIMessage, HumanMessage
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
# from serpapi.google_search import GoogleSearch

# #Parler TTS v1 Modules

# import os
# import re
# import tempfile
# import soundfile as sf
# from string import punctuation
# from pydub import AudioSegment
# from transformers import AutoTokenizer, AutoFeatureExtractor



# #API AutoDate Fix Up
# def get_current_date1():
#     return datetime.now().strftime("%Y-%m-%d")

# # Usage
# current_date1 = get_current_date1()



# # Set environment variables for CUDA
# os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'


# hf_token = os.getenv("HF_TOKEN")
# if hf_token is None:
#     print("Please set your Hugging Face token in the environment variables.")
# else:
#     login(token=hf_token)

# logging.basicConfig(level=logging.DEBUG)


# embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])


# #Initialization

# # Initialize the models
# def initialize_phi_model():
#     model = AutoModelForCausalLM.from_pretrained(
#         "microsoft/Phi-3.5-mini-instruct",
#         device_map="cuda",
#         torch_dtype="auto",
#         trust_remote_code=True,
#     )
#     tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
#     return pipeline("text-generation", model=model, tokenizer=tokenizer)

# def initialize_gpt_model():
#     return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

# # Initialize both models
# phi_pipe = initialize_phi_model()
# gpt_model = initialize_gpt_model()


# # Existing embeddings and vector store for GPT-4o
# gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# gpt_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_embeddings)
# gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})

# # New vector store setup for Phi-3.5
# phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings)
# phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})



# # Pinecone setup
# from pinecone import Pinecone
# pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

# index_name = "radarfinaldata08192024"
# vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
# retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

# chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

# conversational_memory = ConversationBufferWindowMemory(
#     memory_key='chat_history',
#     k=10,
#     return_messages=True
# )

# # Prompt templates
# def get_current_date():
#     return datetime.now().strftime("%B %d, %Y")

# current_date = get_current_date()

# template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places,sports and activities in Birmingham that can enhance your experience.
# If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
# Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
# It was my pleasure!
# {{context}}
# Question: {{question}}
# Helpful Answer:"""

# # template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing the locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# # In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
# # "It was my pleasure!"
# # {{context}}
# # Question: {{question}}
# # Helpful Answer:"""



# template2 =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama . I'm here to help you discover the best experiences this beautiful city has to offer. It's a bright and sunny day today, {current_date}, and I’m excited to assist you with any insights or recommendations you need.
# Whether you're looking for local events, sports ,clubs,concerts etc or just a great place to grab a bite, I've got you covered.Keep your response casual, short and sweet for the quickest response.Don't reveal the location and give the response in a descriptive way, I'm here to help make your time in Birmingham unforgettable!
# "It’s always a pleasure to assist you!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""


# QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
# QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# # Neo4j setup
# graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
#                     username="neo4j",
#                     password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
#                     )
# # Avoid pushing the graph documents to Neo4j every time
# # Only push the documents once and comment the code below after the initial push
# # dataset_name = "Pijush2023/birmindata07312024"
# # page_content_column = 'events_description'
# # loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# # data = loader.load()

# # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# # documents = text_splitter.split_documents(data)

# # llm_transformer = LLMGraphTransformer(llm=chat_model)
# # graph_documents = llm_transformer.convert_to_graph_documents(documents)
# # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)

# class Entities(BaseModel):
#     names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")

# entity_prompt = ChatPromptTemplate.from_messages([
#     ("system", "You are extracting organization and person entities from the text."),
#     ("human", "Use the given format to extract information from the following input: {question}"),
# ])

# entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

# def remove_lucene_chars(input: str) -> str:
#     return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
#                                           "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
#                                           "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
#                                           ";": r"\;", " ": r"\ "}))

# def generate_full_text_query(input: str) -> str:
#     full_text_query = ""
#     words = [el for el in remove_lucene_chars(input).split() if el]
#     for word in words[:-1]:
#         full_text_query += f" {word}~2 AND"
#     full_text_query += f" {words[-1]}~2"
#     return full_text_query.strip()

# def structured_retriever(question: str) -> str:
#     result = ""
#     entities = entity_chain.invoke({"question": question})
#     for entity in entities.names:
#         response = graph.query(
#             """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
#             YIELD node,score
#             CALL {
#               WITH node
#               MATCH (node)-[r:!MENTIONS]->(neighbor)
#               RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
#               UNION ALL
#               WITH node
#               MATCH (node)<-[r:!MENTIONS]-(neighbor)
#               RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
#             }
#             RETURN output LIMIT 50
#             """,
#             {"query": generate_full_text_query(entity)},
#         )
#         result += "\n".join([el['output'] for el in response])
#     return result

# def retriever_neo4j(question: str):
#     structured_data = structured_retriever(question)
#     logging.debug(f"Structured data: {structured_data}")
#     return structured_data

# _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
# in its original language.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""

# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

# def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
#     buffer = []
#     for human, ai in chat_history:
#         buffer.append(HumanMessage(content=human))
#         buffer.append(AIMessage(content=ai))
#     return buffer

# _search_query = RunnableBranch(
#     (
#         RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
#             run_name="HasChatHistoryCheck"
#         ),
#         RunnablePassthrough.assign(
#             chat_history=lambda x: _format_chat_history(x["chat_history"])
#         )
#         | CONDENSE_QUESTION_PROMPT
#         | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
#         | StrOutputParser(),
#     ),
#     RunnableLambda(lambda x : x["question"]),
# )

# # template = """Answer the question based only on the following context:
# # {context}
# # Question: {question}
# # Use natural language and be concise.
# # Answer:"""

# template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""

# qa_prompt = ChatPromptTemplate.from_template(template)

# chain_neo4j = (
#     RunnableParallel(
#         {
#             "context": _search_query | retriever_neo4j,
#             "question": RunnablePassthrough(),
#         }
#     )
#     | qa_prompt
#     | chat_model
#     | StrOutputParser()
# )







# phi_custom_template = """
# <|system|>
# You are a helpful assistant who provides clear, organized, crisp and conversational responses about an events,concerts,sports and all other activities of Birmingham,Alabama .<|end|>
# <|user|>
# {context}
# Question: {question}<|end|>
# <|assistant|>
# Sure! Here's the information you requested:
# """


# def generate_bot_response(history, choice, retrieval_mode, model_choice):
#     if not history:
#         return

#     # Select the model
#     selected_model = chat_model if model_choice == "GPT-4o" else phi_pipe

#     response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
#     history[-1][1] = ""

#     for character in response:
#         history[-1][1] += character
#         yield history  # Stream each character as it is generated
#         time.sleep(0.05)  # Add a slight delay to simulate streaming

#     yield history  # Final yield with the complete response



# def generate_tts_response(response, tts_choice):
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         if tts_choice == "Alpha":
#             audio_future = executor.submit(generate_audio_elevenlabs, response)
#         elif tts_choice == "Beta":
#             audio_future = executor.submit(generate_audio_parler_tts, response)
#         # elif tts_choice == "Gamma":
#         #     audio_future = executor.submit(generate_audio_mars5, response)

#         audio_path = audio_future.result()
#         return audio_path





# import concurrent.futures
# # Existing bot function with concurrent futures for parallel processing
# def bot(history, choice, tts_choice, retrieval_mode, model_choice):
#     # Initialize an empty response
#     response = ""

#     # Create a thread pool to handle both text generation and TTS conversion in parallel
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         # Start the bot response generation in parallel
#         bot_future = executor.submit(generate_bot_response, history, choice, retrieval_mode, model_choice)

#         # Wait for the text generation to start
#         for history_chunk in bot_future.result():
#             response = history_chunk[-1][1]  # Update the response with the current state
#             yield history_chunk, None  # Stream the text output as it's generated

#         # Once text is fully generated, start the TTS conversion
#         tts_future = executor.submit(generate_tts_response, response, tts_choice)

#         # Get the audio output after TTS is done
#         audio_path = tts_future.result()

#         # Stream the final text and audio output
#         yield history, audio_path







# # Modified bot function to separate chatbot response and TTS generation

# def generate_bot_response(history, choice, retrieval_mode, model_choice):
#     if not history:
#         return

#     # Select the model
#     selected_model = chat_model if model_choice == "GPT-4o" else phi_pipe

#     response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
#     history[-1][1] = ""

#     for character in response:
#         history[-1][1] += character
#         yield history  # Stream each character as it is generated
#         time.sleep(0.05)  # Add a slight delay to simulate streaming

#     yield history  # Final yield with the complete response




# def generate_audio_after_text(response, tts_choice):
#     # Generate TTS audio after text response is completed
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         tts_future = executor.submit(generate_tts_response, response, tts_choice)
#         audio_path = tts_future.result()
#         return audio_path

# import re

# def clean_response(response_text):
#     # Remove system and user tags
#     response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
#     response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
#     response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL)

#     # Clean up the text by removing extra whitespace
#     cleaned_response = response_text.strip()
#     cleaned_response = re.sub(r'\s+', ' ', cleaned_response)

#     # Ensure the response is conversational and organized
#     cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.')

#     return cleaned_response




# import traceback

# def generate_answer(message, choice, retrieval_mode, selected_model):
#     logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")

#     # Logic for disabling options for Phi-3.5
#     if selected_model == "Phi-3.5":
#         choice = None
#         retrieval_mode = None

#     try:
#         # Select the appropriate template based on the choice
#         if choice == "Details":
#             prompt_template = QA_CHAIN_PROMPT_1
#         elif choice == "Conversational":
#             prompt_template = QA_CHAIN_PROMPT_2
#         else:
#             prompt_template = QA_CHAIN_PROMPT_1  # Fallback to template1

#         # Handle hotel-related queries
#         if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
#             logging.debug("Handling hotel-related query")
#             response = fetch_google_hotels()
#             logging.debug(f"Hotel response: {response}")
#             return response, extract_addresses(response)

#         # Handle restaurant-related queries
#         if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
#             logging.debug("Handling restaurant-related query")
#             response = fetch_yelp_restaurants()
#             logging.debug(f"Restaurant response: {response}")
#             return response, extract_addresses(response)

#         # Handle flight-related queries
#         if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
#             logging.debug("Handling flight-related query")
#             response = fetch_google_flights()
#             logging.debug(f"Flight response: {response}")
#             return response, extract_addresses(response)

#         # Retrieval-based response
#         if retrieval_mode == "VDB":
#             logging.debug("Using VDB retrieval mode")
#             if selected_model == chat_model:
#                 logging.debug("Selected model: GPT-4o")
#                 retriever = gpt_retriever
#                 context = retriever.get_relevant_documents(message)
#                 logging.debug(f"Retrieved context: {context}")

#                 prompt = prompt_template.format(context=context, question=message)
#                 logging.debug(f"Generated prompt: {prompt}")

#                 qa_chain = RetrievalQA.from_chain_type(
#                     llm=chat_model,
#                     chain_type="stuff",
#                     retriever=retriever,
#                     chain_type_kwargs={"prompt": prompt_template}
#                 )
#                 response = qa_chain({"query": message})
#                 logging.debug(f"GPT-4o response: {response}")
#                 return response['result'], extract_addresses(response['result'])

#             elif selected_model == phi_pipe:
#                 logging.debug("Selected model: Phi-3.5")
#                 retriever = phi_retriever
#                 context_documents = retriever.get_relevant_documents(message)
#                 context = "\n".join([doc.page_content for doc in context_documents])
#                 logging.debug(f"Retrieved context for Phi-3.5: {context}")

#                 # Use the correct template variable
#                 prompt = phi_custom_template.format(context=context, question=message)
#                 logging.debug(f"Generated Phi-3.5 prompt: {prompt}")

#                 response = selected_model(prompt, **{
#                     "max_new_tokens": 400,
#                     "return_full_text": True,
#                     "temperature": 0.7,
#                     "do_sample": True,
#                 })

#                 if response:
#                     generated_text = response[0]['generated_text']
#                     logging.debug(f"Phi-3.5 Response: {generated_text}")
#                     cleaned_response = clean_response(generated_text)
#                     return cleaned_response, extract_addresses(cleaned_response)
#                 else:
#                     logging.error("Phi-3.5 did not return any response.")
#                     return "No response generated.", []

#         elif retrieval_mode == "KGF":
#             logging.debug("Using KGF retrieval mode")
#             response = chain_neo4j.invoke({"question": message})
#             logging.debug(f"KGF response: {response}")
#             return response, extract_addresses(response)
#         else:
#             logging.error("Invalid retrieval mode selected.")
#             return "Invalid retrieval mode selected.", []

#     except Exception as e:
#         logging.error(f"Error in generate_answer: {str(e)}")
#         logging.error(traceback.format_exc())
#         return "Sorry, I encountered an error while processing your request.", []




# def add_message(history, message):
#     history.append((message, None))
#     return history, gr.Textbox(value="", interactive=True, show_label=False)

# def print_like_dislike(x: gr.LikeData):
#     print(x.index, x.value, x.liked)

# def extract_addresses(response):
#     if not isinstance(response, str):
#         response = str(response)
#     address_patterns = [
#         r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
#         r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
#         r'([A-Z].*,\sAL\s\d{5})',
#         r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
#         r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
#         r'(\d{2}.*\sStreets)',
#         r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
#         r'([a-zA-Z]\s Birmingham)',
#         r'([a-zA-Z].*,\sBirmingham,\sAL)',
#         r'(.*),(Birmingham, AL,USA)$'
#         r'(^Birmingham,AL$)',
#         r'((.*)(Stadium|Field),.*,\sAL$)',
#         r'((.*)(Stadium|Field),.*,\sFL$)',
#         r'((.*)(Stadium|Field),.*,\sMS$)',
#         r'((.*)(Stadium|Field),.*,\sAR$)',
#         r'((.*)(Stadium|Field),.*,\sKY$)',
#         r'((.*)(Stadium|Field),.*,\sTN$)',
#         r'((.*)(Stadium|Field),.*,\sLA$)',
#         r'((.*)(Stadium|Field),.*,\sFL$)'

#     ]
#     addresses = []
#     for pattern in address_patterns:
#         addresses.extend(re.findall(pattern, response))
#     return addresses

# all_addresses = []

# def generate_map(location_names):
#     global all_addresses
#     all_addresses.extend(location_names)

#     api_key = os.environ['GOOGLEMAPS_API_KEY']
#     gmaps = GoogleMapsClient(key=api_key)

#     m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)

#     for location_name in all_addresses:
#         geocode_result = gmaps.geocode(location_name)
#         if geocode_result:
#             location = geocode_result[0]['geometry']['location']
#             folium.Marker(
#                 [location['lat'], location['lng']],
#                 tooltip=f"{geocode_result[0]['formatted_address']}"
#             ).add_to(m)

#     map_html = m._repr_html_()
#     return map_html


# def fetch_local_news():
#     api_key = os.environ['SERP_API']
#     url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
#     response = requests.get(url)
#     if response.status_code == 200:
#         results = response.json().get("news_results", [])
#         news_html = """
#         <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
#         <style>
#             .news-item {
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#                 background-color: #f0f8ff;
#                 margin-bottom: 15px;
#                 padding: 10px;
#                 border-radius: 5px;
#                 transition: box-shadow 0.3s ease, background-color 0.3s ease;
#                 font-weight: bold;
#             }
#             .news-item:hover {
#                 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
#                 background-color: #e6f7ff;
#             }
#             .news-item a {
#                 color: #1E90FF;
#                 text-decoration: none;
#                 font-weight: bold;
#             }
#             .news-item a:hover {
#                 text-decoration: underline;
#             }
#             .news-preview {
#                 position: absolute;
#                 display: none;
#                 border: 1px solid #ccc;
#                 border-radius: 5px;
#                 box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
#                 background-color: white;
#                 z-index: 1000;
#                 max-width: 300px;
#                 padding: 10px;
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#             }
#         </style>
#         <script>
#             function showPreview(event, previewContent) {
#                 var previewBox = document.getElementById('news-preview');
#                 previewBox.innerHTML = previewContent;
#                 previewBox.style.left = event.pageX + 'px';
#                 previewBox.style.top = event.pageY + 'px';
#                 previewBox.style.display = 'block';
#             }
#             function hidePreview() {
#                 var previewBox = document.getElementById('news-preview');
#                 previewBox.style.display = 'none';
#             }
#         </script>
#         <div id="news-preview" class="news-preview"></div>
#         """
#         for index, result in enumerate(results[:7]):
#             title = result.get("title", "No title")
#             link = result.get("link", "#")
#             snippet = result.get("snippet", "")
#             news_html += f"""
#             <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
#                 <a href='{link}' target='_blank'>{index + 1}. {title}</a>
#                 <p>{snippet}</p>
#             </div>
#             """
#         return news_html
#     else:
#         return "<p>Failed to fetch local news</p>"

# import numpy as np
# import torch
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor

# model_id = 'openai/whisper-large-v3'
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
# processor = AutoProcessor.from_pretrained(model_id)

# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

# base_audio_drive = "/data/audio"

# #Normal Code with sample rate is 44100 Hz

# def transcribe_function(stream, new_chunk):
#     try:
#         sr, y = new_chunk[0], new_chunk[1]
#     except TypeError:
#         print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
#         return stream, "", None

#     y = y.astype(np.float32) / np.max(np.abs(y))

#     if stream is not None:
#         stream = np.concatenate([stream, y])
#     else:
#         stream = y

#     result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

#     full_text = result.get("text","")

#     return stream, full_text, result







# def update_map_with_response(history):
#     if not history:
#         return ""
#     response = history[-1][1]
#     addresses = extract_addresses(response)
#     return generate_map(addresses)

# def clear_textbox():
#     return ""

# def show_map_if_details(history, choice):
#     if choice in ["Details", "Conversational"]:
#         return gr.update(visible=True), update_map_with_response(history)
#     else:
#         return gr.update(visible(False), "")








# def generate_audio_elevenlabs(text):
#     XI_API_KEY = os.environ['ELEVENLABS_API']
#     VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
#     tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
#     headers = {
#         "Accept": "application/json",
#         "xi-api-key": XI_API_KEY
#     }
#     data = {
#         "text": str(text),
#         "model_id": "eleven_multilingual_v2",
#         "voice_settings": {
#             "stability": 1.0,
#             "similarity_boost": 0.0,
#             "style": 0.60,
#             "use_speaker_boost": False
#         }
#     }
#     response = requests.post(tts_url, headers=headers, json=data, stream=True)
#     if response.ok:
#         audio_segments = []
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
#             for chunk in response.iter_content(chunk_size=1024):
#                 if chunk:
#                     f.write(chunk)
#                     audio_segments.append(chunk)
#             temp_audio_path = f.name

#         # Combine all audio chunks into a single file
#         combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
#         combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
#         combined_audio.export(combined_audio_path, format="mp3")

#         logging.debug(f"Audio saved to {combined_audio_path}")
#         return combined_audio_path
#     else:
#         logging.error(f"Error generating audio: {response.text}")
#         return None




# # chunking audio and then Process

# import concurrent.futures
# import tempfile
# import os
# import numpy as np
# import logging
# from queue import Queue
# from threading import Thread
# from scipy.io.wavfile import write as write_wav
# from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
# from transformers import AutoTokenizer

# # Ensure your device is set to CUDA
# device = "cuda:0" if torch.cuda.is_available() else "cpu"

# repo_id = "parler-tts/parler-tts-mini-v1"

# def generate_audio_parler_tts(text):
#     description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
#     chunk_size_in_s = 0.5

#     # Initialize the tokenizer and model
#     parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
#     parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
#     sampling_rate = parler_model.audio_encoder.config.sampling_rate
#     frame_rate = parler_model.audio_encoder.config.frame_rate

#     def generate(text, description, play_steps_in_s=0.5):
#         play_steps = int(frame_rate * play_steps_in_s)
#         streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps)

#         inputs = parler_tokenizer(description, return_tensors="pt").to(device)
#         prompt = parler_tokenizer(text, return_tensors="pt").to(device)

#         generation_kwargs = dict(
#             input_ids=inputs.input_ids,
#             prompt_input_ids=prompt.input_ids,
#             attention_mask=inputs.attention_mask,
#             prompt_attention_mask=prompt.attention_mask,
#             streamer=streamer,
#             do_sample=True,
#             temperature=1.0,
#             min_new_tokens=10,
#         )

#         thread = Thread(target=parler_model.generate, kwargs=generation_kwargs)
#         thread.start()

#         for new_audio in streamer:
#             if new_audio.shape[0] == 0:
#                 break
#             # Save or process each audio chunk as it is generated
#             yield sampling_rate, new_audio

#     audio_segments = []
#     for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
#         audio_segments.append(audio_chunk)

#         temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav")
#         write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32))
#         logging.debug(f"Saved chunk to {temp_audio_path}")


#     # Combine all the audio chunks into one audio file
#     combined_audio = np.concatenate(audio_segments)
#     combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav")

#     write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32))

#     logging.debug(f"Combined audio saved to {combined_audio_path}")
#     return combined_audio_path


# def fetch_local_events():
#     api_key = os.environ['SERP_API']
#     url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
#     response = requests.get(url)
#     if response.status_code == 200:
#         events_results = response.json().get("events_results", [])
#         events_html = """
#         <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
#         <style>
#             table {
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#                 border-collapse: collapse;
#                 width: 100%;
#             }
#             th, td {
#                 border: 1px solid #fff !important;
#                 padding: 8px;
#             }
#             th {
#                 background-color: #f2f2f2;
#                 color: #333;
#                 text-align: left;
#             }
#             tr:hover {
#                 background-color: #f5f5f5;
#             }
#             .event-link {
#                 color: #1E90FF;
#                 text-decoration: none;
#             }
#             .event-link:hover {
#                 text-decoration: underline;
#             }
#         </style>
#         <table>
#             <tr>
#                 <th>Title</th>
#                 <th>Date and Time</th>
#                 <th>Location</th>
#             </tr>
#         """
#         for event in events_results:
#             title = event.get("title", "No title")
#             date_info = event.get("date", {})
#             date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
#             location = event.get("address", "No location")
#             if isinstance(location, list):
#                 location = " ".join(location)
#             location = location.replace("[", "").replace("]", "")
#             link = event.get("link", "#")
#             events_html += f"""
#             <tr>
#                 <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
#                 <td>{date}</td>
#                 <td>{location}</td>
#             </tr>
#             """
#         events_html += "</table>"
#         return events_html
#     else:
#         return "<p>Failed to fetch local events</p>"

# def get_weather_icon(condition):
#     condition_map = {
#         "Clear": "c01d",
#         "Partly Cloudy": "c02d",
#         "Cloudy": "c03d",
#         "Overcast": "c04d",
#         "Mist": "a01d",
#         "Patchy rain possible": "r01d",
#         "Light rain": "r02d",
#         "Moderate rain": "r03d",
#         "Heavy rain": "r04d",
#         "Snow": "s01d",
#         "Thunderstorm": "t01d",
#         "Fog": "a05d",
#     }
#     return condition_map.get(condition, "c04d")

# def fetch_local_weather():
#     try:
#         api_key = os.environ['WEATHER_API']
#         url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
#         response = requests.get(url)
#         response.raise_for_status()
#         jsonData = response.json()

#         current_conditions = jsonData.get("currentConditions", {})
#         temp_celsius = current_conditions.get("temp", "N/A")

#         if temp_celsius != "N/A":
#             temp_fahrenheit = int((temp_celsius * 9/5) + 32)
#         else:
#             temp_fahrenheit = "N/A"

#         condition = current_conditions.get("conditions", "N/A")
#         humidity = current_conditions.get("humidity", "N/A")

#         weather_html = f"""
#         <div class="weather-theme">
#             <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
#             <div class="weather-content">
#                 <div class="weather-icon">
#                     <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
#                 </div>
#                 <div class="weather-details">
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
#                 </div>
#             </div>
#         </div>
#         <style>
#             .weather-theme {{
#                 animation: backgroundAnimation 10s infinite alternate;
#                 border-radius: 10px;
#                 padding: 10px;
#                 margin-bottom: 15px;
#                 background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
#                 background-size: 400% 400%;
#                 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
#                 transition: box-shadow 0.3s ease, background-color 0.3s ease;
#             }}
#             .weather-theme:hover {{
#                 box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
#                 background-position: 100% 100%;
#             }}
#             @keyframes backgroundAnimation {{
#                 0% {{ background-position: 0% 50%; }}
#                 100% {{ background-position: 100% 50%; }}
#             }}
#             .weather-content {{
#                 display: flex;
#                 align-items: center;
#             }}
#             .weather-icon {{
#                 flex: 1;
#             }}
#             .weather-details {{
#                 flex 3;
#             }}
#         </style>
#         """
#         return weather_html
#     except requests.exceptions.RequestException as e:
#         return f"<p>Failed to fetch local weather: {e}</p>"


# def handle_retrieval_mode_change(choice):
#     if choice == "KGF":
#         return gr.update(interactive=False), gr.update(interactive=False)
#     else:
#         return gr.update(interactive=True), gr.update(interactive=True)

# def handle_model_choice_change(selected_model):
#     if selected_model == "Phi-3.5":
#         # Disable retrieval mode and select style when Phi-3.5 is selected
#         return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
#     elif selected_model == "GPT-4o":
#         # Enable retrieval mode and select style for GPT-4o
#         return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
#     else:
#         # Default case: allow interaction
#         return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)




# def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
#     return f"""
#     {name}
#     - Link: {link}
#     - Location: {location}
#     - Contact No: {phone}
#     - Rating: {rating} stars ({reviews} reviews)
#     - Snippet: {snippet}
#     """

# def fetch_yelp_restaurants():
#     # Introductory prompt for restaurants
#     intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:"

#     params = {
#         "engine": "yelp",
#         "find_desc": "Restaurant",
#         "find_loc": "Birmingham, AL, USA",
#         "api_key": os.getenv("SERP_API")
#     }

#     search = GoogleSearch(params)
#     results = search.get_dict()
#     organic_results = results.get("organic_results", [])

#     response_text = f"{intro_prompt}\n"

#     for result in organic_results[:5]:  # Limiting to top 5 restaurants
#         name = result.get("title", "No name")
#         rating = result.get("rating", "No rating")
#         reviews = result.get("reviews", "No reviews")
#         phone = result.get("phone", "Not Available")
#         snippet = result.get("snippet", "Not Available")
#         location = f"{name}, Birmingham, AL,USA"
#         link = result.get("link", "#")

#         response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet)


#     return response_text






# def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities):
#     return f"""
#     {name}
#     - Link: {link}
#     - Location: {location}
#     - Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate})
#     - Check-in Time: {check_in_time}
#     - Check-out Time: {check_out_time}
#     - Amenities: {amenities}
#     - Description: {description}
#     """

# def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2):
#     # Introductory prompt for hotels
#     intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:"

#     params = {
#         "engine": "google_hotels",
#         "q": query,
#         "check_in_date": check_in,
#         "check_out_date": check_out,
#         "adults": str(adults),
#         "currency": "USD",
#         "gl": "us",
#         "hl": "en",
#         "api_key": os.getenv("SERP_API")
#     }

#     search = GoogleSearch(params)
#     results = search.get_dict()
#     hotel_results = results.get("properties", [])

#     hotel_info = f"{intro_prompt}\n"
#     for hotel in hotel_results[:5]:  # Limiting to top 5 hotels
#         name = hotel.get('name', 'No name')
#         description = hotel.get('description', 'No description')
#         link = hotel.get('link', '#')
#         check_in_time = hotel.get('check_in_time', 'N/A')
#         check_out_time = hotel.get('check_out_time', 'N/A')
#         rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A')
#         before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A')
#         total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A')
#         amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available"

#         location = f"{name}, Birmingham, AL,USA"

#         hotel_info += format_hotel_info(
#             name,
#             link,
#             location,
#             rate_per_night,
#             total_rate,
#             description,
#             check_in_time,
#             check_out_time,
#             amenities
#         )


#     return hotel_info




# def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane):
#     return f"""
#     Flight {flight_number}
#     - Departure: {departure_airport} at {departure_time}
#     - Arrival: {arrival_airport} at {arrival_time}
#     - Duration: {duration} minutes
#     - Airplane: {airplane}
#     """

# def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"):
#     # Introductory prompt for flights
#     intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:"

#     params = {
#         "engine": "google_flights",
#         "departure_id": departure_id,
#         "arrival_id": arrival_id,
#         "outbound_date": outbound_date,
#         "return_date": return_date,
#         "currency": "USD",
#         "hl": "en",
#         "api_key": os.getenv("SERP_API")
#     }

#     search = GoogleSearch(params)
#     results = search.get_dict()

#     # Extract flight details from the results
#     best_flights = results.get('best_flights', [])
#     flight_info = f"{intro_prompt}\n"

#     # Process each flight in the best_flights list
#     for i, flight in enumerate(best_flights, start=1):
#         for segment in flight.get('flights', []):
#             departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport')
#             departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time')
#             arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport')
#             arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time')
#             duration = segment.get('duration', 'Unknown Duration')
#             airplane = segment.get('airplane', 'Unknown Airplane')

#             # Format the flight segment details
#             flight_info += format_flight_info(
#                 flight_number=i,
#                 departure_airport=departure_airport,
#                 departure_time=departure_time,
#                 arrival_airport=arrival_airport,
#                 arrival_time=arrival_time,
#                 duration=duration,
#                 airplane=airplane
#             )


#     return flight_info




# with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
#     with gr.Row():
#         with gr.Column():
#             state = gr.State()

#             chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
#             choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
#             retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
#             model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")

#             # Link the dropdown change to handle_model_choice_change
#             model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])

#             gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")

#             chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
#             tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
#             retriever_button = gr.Button("Retriever")

#             clear_button = gr.Button("Clear")
#             clear_button.click(lambda: [None, None], outputs=[chat_input, state])

#             gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
#             location_output = gr.HTML()
#             audio_output = gr.Audio(interactive=False, autoplay=True)

#             def stop_audio():
#                 audio_output.stop()
#                 return None


#             # retriever_sequence = (
#             #     retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording")
#             #     .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory")
#             #     .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="api_askchatbot_then_generateaudio")
#             #     .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details")
#             #     .then(fn=clear_textbox, inputs=[], outputs=[chat_input],api_name="api_clear_textbox")
#             # )

#             retriever_sequence = (
#                 retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording")
#                 .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory")
#                 # First, generate the bot response
#                 .then(fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response")
#                 # Then, generate the TTS response based on the bot's response
#                 .then(fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response")
#                 .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details")
#                 .then(fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox")
#             )






#             # chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output],api_name="api_stop_audio_recording")
#             # chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory").then(
#             #     fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="api_askchatbot_then_generateaudio"
#             # ).then(
#             #     fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details"
#             # ).then(
#             #     fn=clear_textbox, inputs=[], outputs=[chat_input],api_name="api_clear_textbox"
#             # )

#             chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording").then(
#                 fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory"
#             ).then(
#                 # First, generate the bot response
#                 fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response"
#             ).then(
#                 # Then, generate the TTS response based on the bot's response
#                 fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response"
#             ).then(
#                 fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details"
#             ).then(
#                 fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox"
#             )







#             audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
#             audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="api_voice_to_text")

#         with gr.Column():
#             weather_output = gr.HTML(value=fetch_local_weather())
#             news_output = gr.HTML(value=fetch_local_news())
#             events_output = gr.HTML(value=fetch_local_events())

# demo.queue()
# demo.launch(show_error=True)




import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from huggingface_hub import login
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from scipy.io.wavfile import write as write_wav
from pydub import AudioSegment
from string import punctuation
import librosa
from pathlib import Path
import torchaudio
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline


# Neo4j imports
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_community.document_loaders import HuggingFaceDatasetLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
from serpapi.google_search import GoogleSearch

#Parler TTS v1 Modules

import os
import re
import tempfile
import soundfile as sf
from string import punctuation
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor



#API AutoDate Fix Up
def get_current_date1():
    return datetime.now().strftime("%Y-%m-%d")

# Usage
current_date1 = get_current_date1()



# Set environment variables for CUDA
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'


hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
    print("Please set your Hugging Face token in the environment variables.")
else:
    login(token=hf_token)

logging.basicConfig(level=logging.DEBUG)


embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])


#Initialization

# Initialize the models
def initialize_phi_model():
    model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Phi-3.5-mini-instruct",
        device_map="cuda",
        torch_dtype="auto",
        trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
    return pipeline("text-generation", model=model, tokenizer=tokenizer)

def initialize_gpt_model():
    return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

# Initialize both models
phi_pipe = initialize_phi_model()
gpt_model = initialize_gpt_model()


# Existing embeddings and vector store for GPT-4o
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
gpt_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_embeddings)
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})

# New vector store setup for Phi-3.5
phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings)
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})



# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

index_name = "radarfinaldata08192024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')

conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

# Prompt templates
def get_current_date():
    return datetime.now().strftime("%B %d, %Y")

current_date = get_current_date()

template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places,sports and activities in Birmingham that can enhance your experience.
If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
It was my pleasure!
{{context}}
Question: {{question}}
Helpful Answer:"""

# template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing the locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""



template2 =f"""Hello there! As your friendly and knowledgeable guide here in Birmingham, Alabama . I'm here to help you discover the best experiences this beautiful city has to offer. It's a bright and sunny day today, {current_date}, and I’m excited to assist you with any insights or recommendations you need.
Whether you're looking for local events, sports ,clubs,concerts etc or just a great place to grab a bite, I've got you covered.Keep your response casual, short and sweet for the quickest response.Don't reveal the location and give the response in a descriptive way, I'm here to help make your time in Birmingham unforgettable!
"It’s always a pleasure to assist you!"
{{context}}
Question: {{question}}
Helpful Answer:"""


QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# Neo4j setup
graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
                    username="neo4j",
                    password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
                    )
# Avoid pushing the graph documents to Neo4j every time
# Only push the documents once and comment the code below after the initial push
# dataset_name = "Pijush2023/birmindata07312024"
# page_content_column = 'events_description'
# loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# data = loader.load()

# text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# documents = text_splitter.split_documents(data)

# llm_transformer = LLMGraphTransformer(llm=chat_model)
# graph_documents = llm_transformer.convert_to_graph_documents(documents)
# graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)

class Entities(BaseModel):
    names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")

entity_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are extracting organization and person entities from the text."),
    ("human", "Use the given format to extract information from the following input: {question}"),
])

entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

def remove_lucene_chars(input: str) -> str:
    return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
                                          "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
                                          "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
                                          ";": r"\;", " ": r"\ "}))

def generate_full_text_query(input: str) -> str:
    full_text_query = ""
    words = [el for el in remove_lucene_chars(input).split() if el]
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

def structured_retriever(question: str) -> str:
    result = ""
    entities = entity_chain.invoke({"question": question})
    for entity in entities.names:
        response = graph.query(
            """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
            YIELD node,score
            CALL {
              WITH node
              MATCH (node)-[r:!MENTIONS]->(neighbor)
              RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
              UNION ALL
              WITH node
              MATCH (node)<-[r:!MENTIONS]-(neighbor)
              RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
            }
            RETURN output LIMIT 50
            """,
            {"query": generate_full_text_query(entity)},
        )
        result += "\n".join([el['output'] for el in response])
    return result

def retriever_neo4j(question: str):
    structured_data = structured_retriever(question)
    logging.debug(f"Structured data: {structured_data}")
    return structured_data

_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""

CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
    buffer = []
    for human, ai in chat_history:
        buffer.append(HumanMessage(content=human))
        buffer.append(AIMessage(content=ai))
    return buffer

_search_query = RunnableBranch(
    (
        RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
            run_name="HasChatHistoryCheck"
        ),
        RunnablePassthrough.assign(
            chat_history=lambda x: _format_chat_history(x["chat_history"])
        )
        | CONDENSE_QUESTION_PROMPT
        | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
        | StrOutputParser(),
    ),
    RunnableLambda(lambda x : x["question"]),
)

# template = """Answer the question based only on the following context:
# {context}
# Question: {question}
# Use natural language and be concise.
# Answer:"""

template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""

qa_prompt = ChatPromptTemplate.from_template(template)

chain_neo4j = (
    RunnableParallel(
        {
            "context": _search_query | retriever_neo4j,
            "question": RunnablePassthrough(),
        }
    )
    | qa_prompt
    | chat_model
    | StrOutputParser()
)







phi_custom_template = """
<|system|>
You are a helpful assistant who provides clear, organized, crisp and conversational responses about an events,concerts,sports and all other activities of Birmingham,Alabama .<|end|>
<|user|>
{context}
Question: {question}<|end|>
<|assistant|>
Sure! Here's the information you requested:
"""


def generate_bot_response(history, choice, retrieval_mode, model_choice):
    if not history:
        return

    # Select the model
    selected_model = chat_model if model_choice == "LM-1" else phi_pipe

    response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
    history[-1][1] = ""

    for character in response:
        history[-1][1] += character
        yield history  # Stream each character as it is generated
        time.sleep(0.05)  # Add a slight delay to simulate streaming

    yield history  # Final yield with the complete response



def generate_tts_response(response, tts_choice):
    with concurrent.futures.ThreadPoolExecutor() as executor:
        if tts_choice == "Alpha":
            audio_future = executor.submit(generate_audio_elevenlabs, response)
        elif tts_choice == "Beta":
            audio_future = executor.submit(generate_audio_parler_tts, response)
        # elif tts_choice == "Gamma":
        #     audio_future = executor.submit(generate_audio_mars5, response)

        audio_path = audio_future.result()
        return audio_path





import concurrent.futures
# Existing bot function with concurrent futures for parallel processing
def bot(history, choice, tts_choice, retrieval_mode, model_choice):
    # Initialize an empty response
    response = ""

    # Create a thread pool to handle both text generation and TTS conversion in parallel
    with concurrent.futures.ThreadPoolExecutor() as executor:
        # Start the bot response generation in parallel
        bot_future = executor.submit(generate_bot_response, history, choice, retrieval_mode, model_choice)

        # Wait for the text generation to start
        for history_chunk in bot_future.result():
            response = history_chunk[-1][1]  # Update the response with the current state
            yield history_chunk, None  # Stream the text output as it's generated

        # Once text is fully generated, start the TTS conversion
        tts_future = executor.submit(generate_tts_response, response, tts_choice)

        # Get the audio output after TTS is done
        audio_path = tts_future.result()

        # Stream the final text and audio output
        yield history, audio_path







# Modified bot function to separate chatbot response and TTS generation

def generate_bot_response(history, choice, retrieval_mode, model_choice):
    if not history:
        return

    # Select the model
    selected_model = chat_model if model_choice == "LM-1" else phi_pipe

    response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
    history[-1][1] = ""

    for character in response:
        history[-1][1] += character
        yield history  # Stream each character as it is generated
        time.sleep(0.05)  # Add a slight delay to simulate streaming

    yield history  # Final yield with the complete response




def generate_audio_after_text(response, tts_choice):
    # Generate TTS audio after text response is completed
    with concurrent.futures.ThreadPoolExecutor() as executor:
        tts_future = executor.submit(generate_tts_response, response, tts_choice)
        audio_path = tts_future.result()
        return audio_path

import re

def clean_response(response_text):
    # Remove system and user tags
    response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
    response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
    response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL)

    # Clean up the text by removing extra whitespace
    cleaned_response = response_text.strip()
    cleaned_response = re.sub(r'\s+', ' ', cleaned_response)

    # Ensure the response is conversational and organized
    cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.')

    return cleaned_response




import traceback

def generate_answer(message, choice, retrieval_mode, selected_model):
    logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")

    # Logic for disabling options for Phi-3.5
    if selected_model == "LM-2":
        choice = None
        retrieval_mode = None

    try:
        # Select the appropriate template based on the choice
        if choice == "Details":
            prompt_template = QA_CHAIN_PROMPT_1
        elif choice == "Conversational":
            prompt_template = QA_CHAIN_PROMPT_2
        else:
            prompt_template = QA_CHAIN_PROMPT_1  # Fallback to template1

        # Handle hotel-related queries
        if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
            logging.debug("Handling hotel-related query")
            response = fetch_google_hotels()
            logging.debug(f"Hotel response: {response}")
            return response, extract_addresses(response)

        # Handle restaurant-related queries
        if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
            logging.debug("Handling restaurant-related query")
            response = fetch_yelp_restaurants()
            logging.debug(f"Restaurant response: {response}")
            return response, extract_addresses(response)

        # Handle flight-related queries
        if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
            logging.debug("Handling flight-related query")
            response = fetch_google_flights()
            logging.debug(f"Flight response: {response}")
            return response, extract_addresses(response)

        # Retrieval-based response
        if retrieval_mode == "VDB":
            logging.debug("Using VDB retrieval mode")
            if selected_model == chat_model:
                logging.debug("Selected model: LM-1")
                retriever = gpt_retriever
                context = retriever.get_relevant_documents(message)
                logging.debug(f"Retrieved context: {context}")

                prompt = prompt_template.format(context=context, question=message)
                logging.debug(f"Generated prompt: {prompt}")

                qa_chain = RetrievalQA.from_chain_type(
                    llm=chat_model,
                    chain_type="stuff",
                    retriever=retriever,
                    chain_type_kwargs={"prompt": prompt_template}
                )
                response = qa_chain({"query": message})
                logging.debug(f"LM-1 response: {response}")
                return response['result'], extract_addresses(response['result'])

            elif selected_model == phi_pipe:
                logging.debug("Selected model: LM-2")
                retriever = phi_retriever
                context_documents = retriever.get_relevant_documents(message)
                context = "\n".join([doc.page_content for doc in context_documents])
                logging.debug(f"Retrieved context for LM-2: {context}")

                # Use the correct template variable
                prompt = phi_custom_template.format(context=context, question=message)
                logging.debug(f"Generated LM-2 prompt: {prompt}")

                response = selected_model(prompt, **{
                    "max_new_tokens": 400,
                    "return_full_text": True,
                    "temperature": 0.7,
                    "do_sample": True,
                })

                if response:
                    generated_text = response[0]['generated_text']
                    logging.debug(f"LM-2 Response: {generated_text}")
                    cleaned_response = clean_response(generated_text)
                    return cleaned_response, extract_addresses(cleaned_response)
                else:
                    logging.error("LM-2 did not return any response.")
                    return "No response generated.", []

        elif retrieval_mode == "KGF":
            logging.debug("Using KGF retrieval mode")
            response = chain_neo4j.invoke({"question": message})
            logging.debug(f"KGF response: {response}")
            return response, extract_addresses(response)
        else:
            logging.error("Invalid retrieval mode selected.")
            return "Invalid retrieval mode selected.", []

    except Exception as e:
        logging.error(f"Error in generate_answer: {str(e)}")
        logging.error(traceback.format_exc())
        return "Sorry, I encountered an error while processing your request.", []




def add_message(history, message):
    history.append((message, None))
    return history, gr.Textbox(value="", interactive=True, show_label=False)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def extract_addresses(response):
    if not isinstance(response, str):
        response = str(response)
    address_patterns = [
        r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
        r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,\sAL\s\d{5})',
        r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
        r'(\d{2}.*\sStreets)',
        r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
        r'([a-zA-Z]\s Birmingham)',
        r'([a-zA-Z].*,\sBirmingham,\sAL)',
        r'(.*),(Birmingham, AL,USA)$'
        r'(^Birmingham,AL$)',
        r'((.*)(Stadium|Field),.*,\sAL$)',
        r'((.*)(Stadium|Field),.*,\sFL$)',
        r'((.*)(Stadium|Field),.*,\sMS$)',
        r'((.*)(Stadium|Field),.*,\sAR$)',
        r'((.*)(Stadium|Field),.*,\sKY$)',
        r'((.*)(Stadium|Field),.*,\sTN$)',
        r'((.*)(Stadium|Field),.*,\sLA$)',
        r'((.*)(Stadium|Field),.*,\sFL$)'

    ]
    addresses = []
    for pattern in address_patterns:
        addresses.extend(re.findall(pattern, response))
    return addresses

all_addresses = []

def generate_map(location_names):
    global all_addresses
    all_addresses.extend(location_names)

    api_key = os.environ['GOOGLEMAPS_API_KEY']
    gmaps = GoogleMapsClient(key=api_key)

    m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)

    for location_name in all_addresses:
        geocode_result = gmaps.geocode(location_name)
        if geocode_result:
            location = geocode_result[0]['geometry']['location']
            folium.Marker(
                [location['lat'], location['lng']],
                tooltip=f"{geocode_result[0]['formatted_address']}"
            ).add_to(m)

    map_html = m._repr_html_()
    return map_html


def fetch_local_news():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
    response = requests.get(url)
    if response.status_code == 200:
        results = response.json().get("news_results", [])
        news_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
        <style>
            .news-item {
                font-family: 'Verdana', sans-serif;
                color: #333;
                background-color: #f0f8ff;
                margin-bottom: 15px;
                padding: 10px;
                border-radius: 5px;
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
                font-weight: bold;
            }
            .news-item:hover {
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                background-color: #e6f7ff;
            }
            .news-item a {
                color: #1E90FF;
                text-decoration: none;
                font-weight: bold;
            }
            .news-item a:hover {
                text-decoration: underline;
            }
            .news-preview {
                position: absolute;
                display: none;
                border: 1px solid #ccc;
                border-radius: 5px;
                box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
                background-color: white;
                z-index: 1000;
                max-width: 300px;
                padding: 10px;
                font-family: 'Verdana', sans-serif;
                color: #333;
            }
        </style>
        <script>
            function showPreview(event, previewContent) {
                var previewBox = document.getElementById('news-preview');
                previewBox.innerHTML = previewContent;
                previewBox.style.left = event.pageX + 'px';
                previewBox.style.top = event.pageY + 'px';
                previewBox.style.display = 'block';
            }
            function hidePreview() {
                var previewBox = document.getElementById('news-preview');
                previewBox.style.display = 'none';
            }
        </script>
        <div id="news-preview" class="news-preview"></div>
        """
        for index, result in enumerate(results[:7]):
            title = result.get("title", "No title")
            link = result.get("link", "#")
            snippet = result.get("snippet", "")
            news_html += f"""
            <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
                <a href='{link}' target='_blank'>{index + 1}. {title}</a>
                <p>{snippet}</p>
            </div>
            """
        return news_html
    else:
        return "<p>Failed to fetch local news</p>"

import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor

model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

base_audio_drive = "/data/audio"

#Normal Code with sample rate is 44100 Hz

def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    y = y.astype(np.float32) / np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

    full_text = result.get("text","")

    return stream, full_text, result







def update_map_with_response(history):
    if not history:
        return ""
    response = history[-1][1]
    addresses = extract_addresses(response)
    return generate_map(addresses)

def clear_textbox():
    return ""

def show_map_if_details(history, choice):
    if choice in ["Details", "Conversational"]:
        return gr.update(visible=True), update_map_with_response(history)
    else:
        return gr.update(visible(False), "")








def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        audio_segments = []
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
                    audio_segments.append(chunk)
            temp_audio_path = f.name

        # Combine all audio chunks into a single file
        combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
        combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
        combined_audio.export(combined_audio_path, format="mp3")

        logging.debug(f"Audio saved to {combined_audio_path}")
        return combined_audio_path
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None




# chunking audio and then Process

import concurrent.futures
import tempfile
import os
import np
import logging
from queue import Queue
from threading import Thread
from scipy.io.wavfile import write as write_wav
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
from transformers import AutoTokenizer

# Ensure your device is set to CUDA
device = "cuda:0" if torch.cuda.is_available() else "cpu"

repo_id = "parler-tts/parler-tts-mini-v1"

def generate_audio_parler_tts(text):
    description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
    chunk_size_in_s = 0.5

    # Initialize the tokenizer and model
    parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
    parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
    sampling_rate = parler_model.audio_encoder.config.sampling_rate
    frame_rate = parler_model.audio_encoder.config.frame_rate

    def generate(text, description, play_steps_in_s=0.5):
        play_steps = int(frame_rate * play_steps_in_s)
        streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps)

        inputs = parler_tokenizer(description, return_tensors="pt").to(device)
        prompt = parler_tokenizer(text, return_tensors="pt").to(device)

        generation_kwargs = dict(
            input_ids=inputs.input_ids,
            prompt_input_ids=prompt.input_ids,
            attention_mask=inputs.attention_mask,
            prompt_attention_mask=prompt.attention_mask,
            streamer=streamer,
            do_sample=True,
            temperature=1.0,
            min_new_tokens=10,
        )

        thread = Thread(target=parler_model.generate, kwargs=generation_kwargs)
        thread.start()

        for new_audio in streamer:
            if new_audio.shape[0] == 0:
                break
            # Save or process each audio chunk as it is generated
            yield sampling_rate, new_audio

    audio_segments = []
    for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
        audio_segments.append(audio_chunk)

        temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_chunk_{len(audio_segments)}.wav")
        write_wav(temp_audio_path, sampling_rate, audio_chunk.astype(np.float32))
        logging.debug(f"Saved chunk to {temp_audio_path}")


    # Combine all the audio chunks into one audio file
    combined_audio = np.concatenate(audio_segments)
    combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav")

    write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32))

    logging.debug(f"Combined audio saved to {combined_audio_path}")
    return combined_audio_path


def fetch_local_events():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
    response = requests.get(url)
    if response.status_code == 200:
        events_results = response.json().get("events_results", [])
        events_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
        <style>
            table {
                font-family: 'Verdana', sans-serif;
                color: #333;
                border-collapse: collapse;
                width: 100%;
            }
            th, td {
                border: 1px solid #fff !important;
                padding: 8px;
            }
            th {
                background-color: #f2f2f2;
                color: #333;
                text-align: left;
            }
            tr:hover {
                background-color: #f5f5f5;
            }
            .event-link {
                color: #1E90FF;
                text-decoration: none;
            }
            .event-link:hover {
                text-decoration: underline;
            }
        </style>
        <table>
            <tr>
                <th>Title</th>
                <th>Date and Time</th>
                <th>Location</th>
            </tr>
        """
        for event in events_results:
            title = event.get("title", "No title")
            date_info = event.get("date", {})
            date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
            location = event.get("address", "No location")
            if isinstance(location, list):
                location = " ".join(location)
            location = location.replace("[", "").replace("]", "")
            link = event.get("link", "#")
            events_html += f"""
            <tr>
                <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
                <td>{date}</td>
                <td>{location}</td>
            </tr>
            """
        events_html += "</table>"
        return events_html
    else:
        return "<p>Failed to fetch local events</p>"

def get_weather_icon(condition):
    condition_map = {
        "Clear": "c01d",
        "Partly Cloudy": "c02d",
        "Cloudy": "c03d",
        "Overcast": "c04d",
        "Mist": "a01d",
        "Patchy rain possible": "r01d",
        "Light rain": "r02d",
        "Moderate rain": "r03d",
        "Heavy rain": "r04d",
        "Snow": "s01d",
        "Thunderstorm": "t01d",
        "Fog": "a05d",
    }
    return condition_map.get(condition, "c04d")

def fetch_local_weather():
    try:
        api_key = os.environ['WEATHER_API']
        url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
        response = requests.get(url)
        response.raise_for_status()
        jsonData = response.json()

        current_conditions = jsonData.get("currentConditions", {})
        temp_celsius = current_conditions.get("temp", "N/A")

        if temp_celsius != "N/A":
            temp_fahrenheit = int((temp_celsius * 9/5) + 32)
        else:
            temp_fahrenheit = "N/A"

        condition = current_conditions.get("conditions", "N/A")
        humidity = current_conditions.get("humidity", "N/A")

        weather_html = f"""
        <div class="weather-theme">
            <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
            <div class="weather-content">
                <div class="weather-icon">
                    <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
                </div>
                <div class="weather-details">
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
                </div>
            </div>
        </div>
        <style>
            .weather-theme {{
                animation: backgroundAnimation 10s infinite alternate;
                border-radius: 10px;
                padding: 10px;
                margin-bottom: 15px;
                background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
                background-size: 400% 400%;
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
            }}
            .weather-theme:hover {{
                box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
                background-position: 100% 100%;
            }}
            @keyframes backgroundAnimation {{
                0% {{ background-position: 0% 50%; }}
                100% {{ background-position: 100% 50%; }}
            }}
            .weather-content {{
                display: flex;
                align-items: center;
            }}
            .weather-icon {{
                flex: 1;
            }}
            .weather-details {{
                flex 3;
            }}
        </style>
        """
        return weather_html
    except requests.exceptions.RequestException as e:
        return f"<p>Failed to fetch local weather: {e}</p>"


def handle_retrieval_mode_change(choice):
    if choice == "KGF":
        return gr.update(interactive=False), gr.update(interactive=False)
    else:
        return gr.update(interactive=True), gr.update(interactive=True)

def handle_model_choice_change(selected_model):
    if selected_model == "LM-2":
        # Disable retrieval mode and select style when LM-2 is selected
        return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive(False))
    elif selected_model == "LM-1":
        # Enable retrieval mode and select style for LM-1
        return gr.update(interactive=True), gr.update(interactive(True)), gr.update(interactive=True)
    else:
        # Default case: allow interaction
        return gr.update(interactive=True), gr.update(interactive(True)), gr.update(interactive=True)




def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
    return f"""
    {name}
    - Link: {link}
    - Location: {location}
    - Contact No: {phone}
    - Rating: {rating} stars ({reviews} reviews)
    - Snippet: {snippet}
    """

def fetch_yelp_restaurants():
    # Introductory prompt for restaurants
    intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:"

    params = {
        "engine": "yelp",
        "find_desc": "Restaurant",
        "find_loc": "Birmingham, AL, USA",
        "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    organic_results = results.get("organic_results", [])

    response_text = f"{intro_prompt}\n"

    for result in organic_results[:5]:  # Limiting to top 5 restaurants
        name = result.get("title", "No name")
        rating = result.get("rating", "No rating")
        reviews = result.get("reviews", "No reviews")
        phone = result.get("phone", "Not Available")
        snippet = result.get("snippet", "Not Available")
        location = f"{name}, Birmingham, AL,USA"
        link = result.get("link", "#")

        response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet)


    return response_text






def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities):
    return f"""
    {name}
    - Link: {link}
    - Location: {location}
    - Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate})
    - Check-in Time: {check_in_time}
    - Check-out Time: {check_out_time}
    - Amenities: {amenities}
    - Description: {description}
    """

def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2):
    # Introductory prompt for hotels
    intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:"

    params = {
        "engine": "google_hotels",
        "q": query,
        "check_in_date": check_in,
        "check_out_date": check_out,
        "adults": str(adults),
        "currency": "USD",
        "gl": "us",
        "hl": "en",
        "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    hotel_results = results.get("properties", [])

    hotel_info = f"{intro_prompt}\n"
    for hotel in hotel_results[:5]:  # Limiting to top 5 hotels
        name = hotel.get('name', 'No name')
        description = hotel.get('description', 'No description')
        link = hotel.get('link', '#')
        check_in_time = hotel.get('check_in_time', 'N/A')
        check_out_time = hotel.get('check_out_time', 'N/A')
        rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A')
        before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A')
        total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A')
        amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available"

        location = f"{name}, Birmingham, AL,USA"

        hotel_info += format_hotel_info(
            name,
            link,
            location,
            rate_per_night,
            total_rate,
            description,
            check_in_time,
            check_out_time,
            amenities
        )


    return hotel_info




def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane):
    return f"""
    Flight {flight_number}
    - Departure: {departure_airport} at {departure_time}
    - Arrival: {arrival_airport} at {arrival_time}
    - Duration: {duration} minutes
    - Airplane: {airplane}
    """

def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"):
    # Introductory prompt for flights
    intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:"

    params = {
        "engine": "google_flights",
        "departure_id": departure_id,
        "arrival_id": arrival_id,
        "outbound_date": outbound_date,
        "return_date": return_date,
        "currency": "USD",
        "hl": "en",
        "api_key": os.getenv("SERP_API")
    }

    search = GoogleSearch(params)
    results = search.get_dict()

    # Extract flight details from the results
    best_flights = results.get('best_flights', [])
    flight_info = f"{intro_prompt}\n"

    # Process each flight in the best_flights list
    for i, flight in enumerate(best_flights, start=1):
        for segment in flight.get('flights', []):
            departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport')
            departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time')
            arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport')
            arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time')
            duration = segment.get('duration', 'Unknown Duration')
            airplane = segment.get('airplane', 'Unknown Airplane')

            # Format the flight segment details
            flight_info += format_flight_info(
                flight_number=i,
                departure_airport=departure_airport,
                departure_time=departure_time,
                arrival_airport=arrival_airport,
                arrival_time=arrival_time,
                duration=duration,
                airplane=airplane
            )


    return flight_info




with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
    with gr.Row():
        with gr.Column():
            state = gr.State()

            chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
            choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
            retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
            model_choice = gr.Dropdown(label="Choose Model", choices=["LM-1", "LM-2"], value="LM-1")

            # Link the dropdown change to handle_model_choice_change
            model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])

            gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")

            chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
            tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
            retriever_button = gr.Button("Retriever")

            clear_button = gr.Button("Clear")
            clear_button.click(lambda: [None, None], outputs=[chat_input, state])

            gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
            location_output = gr.HTML()
            audio_output = gr.Audio(interactive=False, autoplay=True)

            def stop_audio():
                audio_output.stop()
                return None


            # retriever_sequence = (
            #     retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording")
            #     .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory")
            #     .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="api_askchatbot_then_generateaudio")
            #     .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details")
            #     .then(fn=clear_textbox, inputs=[], outputs=[chat_input],api_name="api_clear_textbox")
            # )

            retriever_sequence = (
                retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording")
                .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory")
                # First, generate the bot response
                .then(fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response")
                # Then, generate the TTS response based on the bot's response
                .then(fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response")
                .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details")
                .then(fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox")
            )






            # chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output],api_name="api_stop_audio_recording")
            # chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory").then(
            #     fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="api_askchatbot_then_generateaudio"
            # ).then(
            #     fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details"
            # ).then(
            #     fn=clear_textbox, inputs=[], outputs=[chat_input],api_name="api_clear_textbox"
            # )

            chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="api_stop_audio_recording").then(
                fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="api_addprompt_chathistory"
            ).then(
                # First, generate the bot response
                fn=generate_bot_response, inputs=[chatbot, choice, retrieval_mode, model_choice], outputs=[chatbot], api_name="api_generate_bot_response"
            ).then(
                # Then, generate the TTS response based on the bot's response
                fn=generate_tts_response, inputs=[chatbot, tts_choice], outputs=[audio_output], api_name="api_generate_tts_response"
            ).then(
                fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="api_show_map_details"
            ).then(
                fn=clear_textbox, inputs=[], outputs=[chat_input], api_name="api_clear_textbox"
            )







            audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
            audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="api_voice_to_text")

        with gr.Column():
            weather_output = gr.HTML(value=fetch_local_weather())
            news_output = gr.HTML(value=fetch_local_news())
            events_output = gr.HTML(value=fetch_local_events())

demo.queue()
demo.launch(show_error=True)