File size: 51,579 Bytes
90468b8
 
017d269
90468b8
 
017d269
90468b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
017d269
90468b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37755ba
90468b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae178ae
 
34a1950
 
ae178ae
34a1950
 
f061ade
ae178ae
34a1950
ae178ae
34a1950
ae178ae
34a1950
ae178ae
f061ade
e5a569c
34a1950
 
 
 
 
 
 
9cbe52f
90468b8
 
 
 
 
 
f061ade
03b0b37
f061ade
03b0b37
f061ade
03b0b37
 
f061ade
03b0b37
 
f061ade
 
 
 
34a1950
7bd6901
34a1950
 
7bd6901
34a1950
 
 
7bd6901
5c60299
34a1950
 
7bd6901
34a1950
f061ade
 
7bd6901
f061ade
 
 
 
 
7bd6901
34a1950
 
 
7bd6901
f061ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34a1950
37755ba
 
f061ade
 
34a1950
 
 
7bd6901
37755ba
 
 
34a1950
 
 
7bd6901
34a1950
 
7bd6901
34a1950
 
 
 
 
 
 
 
f061ade
 
 
 
 
 
 
34a1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f061ade
34a1950
 
 
 
 
 
 
 
f061ade
 
 
 
 
e5a569c
34a1950
 
f061ade
37755ba
983084f
 
34a1950
c49ac12
 
 
 
983084f
c49ac12
 
983084f
 
 
c49ac12
983084f
 
34a1950
 
 
7bd6901
f061ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e577415
f061ade
 
 
 
 
 
 
 
 
 
3c2dcc8
f061ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34a1950
f061ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a36352a
 
 
148de2d
 
8959efa
 
 
 
a36352a
 
9cbe52f
 
8959efa
 
 
 
 
 
a36352a
90468b8
 
 
 
 
 
8959efa
 
 
 
 
 
90468b8
 
 
 
37755ba
 
90468b8
37755ba
a36352a
37755ba
 
a36352a
f061ade
 
 
c1ad08e
2b7c282
f061ade
 
 
 
 
 
2b7c282
c1ad08e
f061ade
 
 
 
 
 
 
 
 
 
 
16f0b32
983084f
6fa3d6f
 
 
983084f
6fa3d6f
 
e5a569c
983084f
6fa3d6f
 
 
983084f
6fa3d6f
 
 
 
983084f
 
6fa3d6f
 
9bacc62
983084f
 
 
 
 
 
 
 
 
6fa3d6f
983084f
6fa3d6f
 
 
7a0b2af
983084f
6fa3d6f
 
983084f
6fa3d6f
 
9cbe52f
37755ba
 
 
8959efa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
# import subprocess
# import sys

# def install_parler_tts():
#     subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/huggingface/parler-tts.git"])

# # Call the function to install parler-tts
# install_parler_tts()


# import gradio as gr
# import requests
# import os
# import time
# import re
# import logging
# import tempfile
# import folium
# import concurrent.futures
# import torch
# from PIL import Image
# from datetime import datetime
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# from googlemaps import Client as GoogleMapsClient
# from gtts import gTTS
# from diffusers import StableDiffusion3Pipeline
# import soundfile as sf

# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
# from langchain_pinecone import PineconeVectorStore
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.chains.conversation.memory import ConversationBufferWindowMemory
# from langchain.agents import Tool, initialize_agent
# from huggingface_hub import login

# # Check if the token is already set in the environment variables
# hf_token = os.getenv("HF_TOKEN")

# if hf_token is None:
#     # If the token is not set, prompt for it (this should be done securely)
#     print("Please set your Hugging Face token in the environment variables.")
# else:
#     # Login using the token
#     login(token=hf_token)

# # Your application logic goes here
# print("Logged in successfully to Hugging Face Hub!")

# # Set up logging
# logging.basicConfig(level=logging.DEBUG)

# # Initialize OpenAI embeddings
# embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

# # Initialize Pinecone
# from pinecone import Pinecone
# pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

# index_name = "birmingham-dataset"
# vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
# retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

# # Initialize ChatOpenAI model
# chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
#                         temperature=0, model='gpt-4o')

# conversational_memory = ConversationBufferWindowMemory(
#     memory_key='chat_history',
#     k=10,
#     return_messages=True
# )

# def get_current_time_and_date():
#     now = datetime.now()
#     return now.strftime("%Y-%m-%d %H:%M:%S")

# # Example usage
# current_time_and_date = get_current_time_and_date()

# def fetch_local_events():
#     api_key = os.environ['SERP_API']
#     url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'

#     response = requests.get(url)
#     if response.status_code == 200:
#         events_results = response.json().get("events_results", [])
#         events_html = """
#         <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
#         <style>
#             .event-item {
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#                 margin-bottom: 15px;
#                 padding: 10px;
#                 font-weight: bold;
#             }
#             .event-item a {
#                 color: #1E90FF;
#                 text-decoration: none;
#             }
#             .event-item a:hover {
#                 text-decoration: underline;
#             }
#         </style>
#         """
#         for index, event in enumerate(events_results):
#             title = event.get("title", "No title")
#             date = event.get("date", "No date")
#             location = event.get("address", "No location")
#             link = event.get("link", "#")
#             events_html += f"""
#             <div class="event-item">
#                 <a href='{link}' target='_blank'>{index + 1}. {title}</a>
#                 <p>Date: {date}<br>Location: {location}</p>
#             </div>
#             """
#         return events_html
#     else:
#         return "<p>Failed to fetch local events</p>"

# def fetch_local_weather():
#     try:
#         api_key = os.environ['WEATHER_API']
#         url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
#         response = requests.get(url)
#         response.raise_for_status()
#         jsonData = response.json()
        
#         current_conditions = jsonData.get("currentConditions", {})
#         temp_celsius = current_conditions.get("temp", "N/A")
        
#         if temp_celsius != "N/A":
#             temp_fahrenheit = int((temp_celsius * 9/5) + 32)
#         else:
#             temp_fahrenheit = "N/A"
            
#         condition = current_conditions.get("conditions", "N/A")
#         humidity = current_conditions.get("humidity", "N/A")

#         weather_html = f"""
#         <div class="weather-theme">
#             <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
#             <div class="weather-content">
#                 <div class="weather-icon">
#                     <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
#                 </div>
#                 <div class="weather-details">
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
#                     <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
#                 </div>
#             </div>
#         </div>
#         <style>
#             .weather-theme {{
#                 animation: backgroundAnimation 10s infinite alternate;
#                 border-radius: 10px;
#                 padding: 10px;
#                 margin-bottom: 15px;
#                 background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
#                 background-size: 400% 400%;
#                 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
#                 transition: box-shadow 0.3s ease, background-color 0.3s ease;
#             }}
#             .weather-theme:hover {{
#                 box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
#                 background-position: 100% 100%;
#             }}
#             @keyframes backgroundAnimation {{
#                 0% {{ background-position: 0% 50%; }}
#                 100% {{ background-position: 100% 50%; }}
#             }}
#             .weather-content {{
#                 display: flex;
#                 align-items: center;
#             }}
#             .weather-icon {{
#                 flex: 1;
#             }}
#             .weather-details {{
#                 flex: 3;
#             }}
#         </style>
#         """
#         return weather_html
#     except requests.exceptions.RequestException as e:
#         return f"<p>Failed to fetch local weather: {e}</p>"

# def get_weather_icon(condition):
#     condition_map = {
#         "Clear": "c01d",
#         "Partly Cloudy": "c02d",
#         "Cloudy": "c03d",
#         "Overcast": "c04d",
#         "Mist": "a01d",
#         "Patchy rain possible": "r01d",
#         "Light rain": "r02d",
#         "Moderate rain": "r03d",
#         "Heavy rain": "r04d",
#         "Snow": "s01d",
#         "Thunderstorm": "t01d",
#         "Fog": "a05d",
#     }
#     return condition_map.get(condition, "c04d")

# # Update prompt templates to include fetched details

# current_time_and_date = get_current_time_and_date()

# # Define prompt templates
# template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context, 
# memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
# Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
# event type and description. Always say "It was my pleasure!" at the end of the answer.
# {context}
# Question: {question}
# Helpful Answer:"""

# template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context, 
# memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
# Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
# {context}
# Question: {question}
# Helpful Answer:"""

# QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
# QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# # Define the retrieval QA chain
# def build_qa_chain(prompt_template):
#     qa_chain = RetrievalQA.from_chain_type(
#         llm=chat_model,
#         chain_type="stuff",
#         retriever=retriever,
#         chain_type_kwargs={"prompt": prompt_template}
#     )
#     tools = [
#         Tool(
#             name='Knowledge Base',
#             func=qa_chain,
#             description='Use this tool when answering general knowledge queries to get more information about the topic'
#         )
#     ]
#     return qa_chain, tools

# # Define the agent initializer
# def initialize_agent_with_prompt(prompt_template):
#     qa_chain, tools = build_qa_chain(prompt_template)
#     agent = initialize_agent(
#         agent='chat-conversational-react-description',
#         tools=tools,
#         llm=chat_model,
#         verbose=False,
#         max_iteration=5,
#         early_stopping_method='generate',
#         memory=conversational_memory
#     )
#     return agent

# # Define the function to generate answers
# def generate_answer(message, choice):
#     logging.debug(f"generate_answer called with prompt_choice: {choice}")
    
#     if choice == "Details":
#         agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
#     elif choice == "Conversational":
#         agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
#     else:
#         logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
#         agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
#     response = agent(message)

#     # Extract addresses for mapping regardless of the choice
#     addresses = extract_addresses(response['output'])
#     return response['output'], addresses

# def bot(history, choice, tts_model):
#     if not history:
#         return history
#     response, addresses = generate_answer(history[-1][0], choice)
#     history[-1][1] = ""
    
#     # Generate audio for the entire response in a separate thread
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         if tts_model == "ElevenLabs":
#             audio_future = executor.submit(generate_audio_elevenlabs, response)
#         else:
#             audio_future = executor.submit(generate_audio_parler_tts, response)
        
#         for character in response:
#             history[-1][1] += character
#             time.sleep(0.05)  # Adjust the speed of text appearance
#             yield history, None
        
#         audio_path = audio_future.result()
#         yield history, audio_path


# def add_message(history, message):
#     history.append((message, None))
#     return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)

# def print_like_dislike(x: gr.LikeData):
#     print(x.index, x.value, x.liked)

# def extract_addresses(response):
#     if not isinstance(response, str):
#         response = str(response)
#     address_patterns = [
#         r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
#         r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
#         r'([A-Z].*,\sAL\s\d{5})',
#         r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
#         r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
#         r'(\d{2}.*\sStreets)',
#         r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})'
#         r'([a-zA-Z]\s Birmingham)'
#     ]
#     addresses = []
#     for pattern in address_patterns:
#         addresses.extend(re.findall(pattern, response))
#     return addresses

# all_addresses = []

# def generate_map(location_names):
#     global all_addresses
#     all_addresses.extend(location_names)
    
#     api_key = os.environ['GOOGLEMAPS_API_KEY']
#     gmaps = GoogleMapsClient(key=api_key)
    
#     m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
    
#     for location_name in all_addresses:
#         geocode_result = gmaps.geocode(location_name)
#         if geocode_result:
#             location = geocode_result[0]['geometry']['location']
#             folium.Marker(
#                 [location['lat'], location['lng']],
#                 tooltip=f"{geocode_result[0]['formatted_address']}"
#             ).add_to(m)
    
#     map_html = m._repr_html_()
#     return map_html

# def fetch_local_news():
#     api_key = os.environ['SERP_API']
#     url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
#     response = requests.get(url)
#     if response.status_code == 200:
#         results = response.json().get("news_results", [])
#         news_html = """
#         <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
#         <style>
#             .news-item {
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#                 background-color: #f0f8ff;
#                 margin-bottom: 15px;
#                 padding: 10px;
#                 border-radius: 5px;
#                 transition: box-shadow 0.3s ease, background-color 0.3s ease;
#                 font-weight: bold;
#             }
#             .news-item:hover {
#                 box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
#                 background-color: #e6f7ff;
#             }
#             .news-item a {
#                 color: #1E90FF;
#                 text-decoration: none;
#                 font-weight: bold;
#             }
#             .news-item a:hover {
#                 text-decoration: underline;
#             }
#             .news-preview {
#                 position: absolute;
#                 display: none;
#                 border: 1px solid #ccc;
#                 border-radius: 5px;
#                 box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
#                 background-color: white;
#                 z-index: 1000;
#                 max-width: 300px;
#                 padding: 10px;
#                 font-family: 'Verdana', sans-serif;
#                 color: #333;
#             }
#         </style>
#         <script>
#             function showPreview(event, previewContent) {
#                 var previewBox = document.getElementById('news-preview');
#                 previewBox.innerHTML = previewContent;
#                 previewBox.style.left = event.pageX + 'px';
#                 previewBox.style.top = event.pageY + 'px';
#                 previewBox.style.display = 'block';
#             }
#             function hidePreview() {
#                 var previewBox = document.getElementById('news-preview');
#                 previewBox.style.display = 'none';
#             }
#         </script>
#         <div id="news-preview" class="news-preview"></div>
#         """
#         for index, result in enumerate(results[:7]):
#             title = result.get("title", "No title")
#             link = result.get("link", "#")
#             snippet = result.get("snippet", "")
#             news_html += f"""
#             <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
#                 <a href='{link}' target='_blank'>{index + 1}. {title}</a>
#                 <p>{snippet}</p>
#             </div>
#             """
#         return news_html
#     else:
#         return "<p>Failed to fetch local news</p>"

# # Voice Control
# import numpy as np
# import torch
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# from parler_tts import ParlerTTSForConditionalGeneration
# from transformers import AutoTokenizer

# model_id = 'openai/whisper-large-v3'
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
#                                                   #low_cpu_mem_usage=True,
#                                                   use_safetensors=True).to(device)
# processor = AutoProcessor.from_pretrained(model_id)

# # Optimized ASR pipeline
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

# base_audio_drive = "/data/audio"

# import numpy as np

# def transcribe_function(stream, new_chunk):
#     try:
#         sr, y = new_chunk[0], new_chunk[1]
#     except TypeError:
#         print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
#         return stream, "", None

#     y = y.astype(np.float32) / np.max(np.abs(y))

#     if stream is not None:
#         stream = np.concatenate([stream, y])
#     else:
#         stream = y

#     result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

#     full_text = result.get("text", "")
    
#     return stream, full_text, result

# def update_map_with_response(history):
#     if not history:
#         return ""
#     response = history[-1][1]
#     addresses = extract_addresses(response)
#     return generate_map(addresses)

# def clear_textbox():
#     return "" 

# def show_map_if_details(history,choice):
#     if choice in ["Details", "Conversational"]:
#         return gr.update(visible=True), update_map_with_response(history)
#     else:
#         return gr.update(visible=False), ""

# def generate_audio_elevenlabs(text):
#     XI_API_KEY = os.environ['ELEVENLABS_API']
#     VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'  # Replace with your voice ID
#     tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
#     headers = {
#         "Accept": "application/json",
#         "xi-api-key": XI_API_KEY
#     }
#     data = {
#         "text": str(text),
#         "model_id": "eleven_multilingual_v2",
#         "voice_settings": {
#             "stability": 1.0,
#             "similarity_boost": 0.0,
#             "style": 0.60,  # Adjust style for more romantic tone
#             "use_speaker_boost": False
#         }
#     }
#     response = requests.post(tts_url, headers=headers, json=data, stream=True)
#     if response.ok:
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
#             for chunk in response.iter_content(chunk_size=1024):
#                 f.write(chunk)
#             temp_audio_path = f.name
#         logging.debug(f"Audio saved to {temp_audio_path}")
#         return temp_audio_path
#     else:
#         logging.error(f"Error generating audio: {response.text}")
#         return None

# def generate_audio_parler_tts(text):
#     model_id = 'parler-tts/parler_tts_mini_v0.1'
#     device = "cuda:0" if torch.cuda.is_available() else "cpu"
#     try:
#         model = ParlerTTSForConditionalGeneration.from_pretrained(model_id).to(device)
#     except torch.cuda.OutOfMemoryError:
#         print("CUDA out of memory. Switching to CPU.")
#         device = "cpu"
#         model = ParlerTTSForConditionalGeneration.from_pretrained(model_id).to(device)
#     tokenizer = AutoTokenizer.from_pretrained(model_id)

#     description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."

#     input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
#     prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)

#     generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
#     audio_arr = generation.cpu().numpy().squeeze()
    
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
#         sf.write(f.name, audio_arr, model.config.sampling_rate)
#         temp_audio_path = f.name

#     logging.debug(f"Audio saved to {temp_audio_path}")
#     return temp_audio_path

# # Stable Diffusion setup
# pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
# pipe = pipe.to("cuda")

# def generate_image(prompt):
#     image = pipe(
#         prompt,
#         negative_prompt="",
#         num_inference_steps=28,
#         guidance_scale=3.0,
#     ).images[0]
#     return image

# # Hardcoded prompt for image generation
# hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in th night, michael mann style in omaha enticing the consumer to buy this product"
# hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
# hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."

# def update_images():
#     image_1 = generate_image(hardcoded_prompt_1)
#     image_2 = generate_image(hardcoded_prompt_2)
#     image_3 = generate_image(hardcoded_prompt_3)
#     return image_1, image_2, image_3

# with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
    
#     with gr.Row():
#         with gr.Column():
#             state = gr.State()
            
#             chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
#             choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
#             tts_choice = gr.Radio(label="Select TTS Model", choices=["ElevenLabs", "Parler TTS"], value="Parler TTS")
            
#             gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
#             chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
#             chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
#             bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
#             bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
#             chatbot.like(print_like_dislike, None, None)
#             clear_button = gr.Button("Clear")
#             clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
           
            
#             audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
#             audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")

#             # gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
#             # location_output = gr.HTML()
#             # bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
        
#         # with gr.Column():
#         #     weather_output = gr.HTML(value=fetch_local_weather())
#         #     news_output = gr.HTML(value=fetch_local_news())
#         #     news_output = gr.HTML(value=fetch_local_events())
            
#         with gr.Column():
            
#             image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
#             image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
#             image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)


#             refresh_button = gr.Button("Refresh Images")
#             refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
     
# demo.queue()
# demo.launch(share=True)

#### Modified -1 ####

import subprocess
import sys
import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusion3Pipeline
import soundfile as sf
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent
from huggingface_hub import login

def install_parler_tts():
    subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/huggingface/parler-tts.git"])

# Call the function to install parler-tts
install_parler_tts()

# Check if the token is already set in the environment variables
hf_token = os.getenv("HF_TOKEN")

if hf_token is None:
    # If the token is not set, prompt for it (this should be done securely)
    print("Please set your Hugging Face token in the environment variables.")
else:
    # Login using the token
    login(token=hf_token)

# Your application logic goes here
print("Logged in successfully to Hugging Face Hub!")

# Set up logging
logging.basicConfig(level=logging.DEBUG)

# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

index_name = "birmingham-dataset"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})

# Initialize ChatOpenAI model
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
                        temperature=0, model='gpt-4o')

conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=10,
    return_messages=True
)

def get_current_time_and_date():
    now = datetime.now()
    return now.strftime("%Y-%m-%d %H:%M:%S")

# Example usage
current_time_and_date = get_current_time_and_date()

def fetch_local_events():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'

    response = requests.get(url)
    if response.status_code == 200:
        events_results = response.json().get("events_results", [])
        events_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
        <style>
            .event-item {
                font-family: 'Verdana', sans-serif;
                color: #333;
                margin-bottom: 15px;
                padding: 10px;
                font-weight: bold;
            }
            .event-item a {
                color: #1E90FF;
                text-decoration: none;
            }
            .event-item a:hover {
                text-decoration: underline;
            }
        </style>
        """
        for index, event in enumerate(events_results):
            title = event.get("title", "No title")
            date = event.get("date", "No date")
            location = event.get("address", "No location")
            link = event.get("link", "#")
            events_html += f"""
            <div class="event-item">
                <a href='{link}' target='_blank'>{index + 1}. {title}</a>
                <p>Date: {date}<br>Location: {location}</p>
            </div>
            """
        return events_html
    else:
        return "<p>Failed to fetch local events</p>"

def fetch_local_weather():
    try:
        api_key = os.environ['WEATHER_API']
        url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
        response = requests.get(url)
        response.raise_for_status()
        jsonData = response.json()
        
        current_conditions = jsonData.get("currentConditions", {})
        temp_celsius = current_conditions.get("temp", "N/A")
        
        if temp_celsius != "N/A":
            temp_fahrenheit = int((temp_celsius * 9/5) + 32)
        else:
            temp_fahrenheit = "N/A"
            
        condition = current_conditions.get("conditions", "N/A")
        humidity = current_conditions.get("humidity", "N/A")

        weather_html = f"""
        <div class="weather-theme">
            <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
            <div class="weather-content">
                <div class="weather-icon">
                    <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
                </div>
                <div class="weather-details">
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
                    <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
                </div>
            </div>
        </div>
        <style>
            .weather-theme {{
                animation: backgroundAnimation 10s infinite alternate;
                border-radius: 10px;
                padding: 10px;
                margin-bottom: 15px;
                background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
                background-size: 400% 400%;
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
            }}
            .weather-theme:hover {{
                box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
                background-position: 100% 100%;
            }}
            @keyframes backgroundAnimation {{
                0% {{ background-position: 0% 50%; }}
                100% {{ background-position: 100% 50%; }}
            }}
            .weather-content {{
                display: flex;
                align-items: center;
            }}
            .weather-icon {{
                flex: 1;
            }}
            .weather-details {{
                flex: 3;
            }}
        </style>
        """
        return weather_html
    except requests.exceptions.RequestException as e:
        return f"<p>Failed to fetch local weather: {e}</p>"

def get_weather_icon(condition):
    condition_map = {
        "Clear": "c01d",
        "Partly Cloudy": "c02d",
        "Cloudy": "c03d",
        "Overcast": "c04d",
        "Mist": "a01d",
        "Patchy rain possible": "r01d",
        "Light rain": "r02d",
        "Moderate rain": "r03d",
        "Heavy rain": "r04d",
        "Snow": "s01d",
        "Thunderstorm": "t01d",
        "Fog": "a05d",
    }
    return condition_map.get(condition, "c04d")

# Update prompt templates to include fetched details

current_time_and_date = get_current_time_and_date()

# Define prompt templates
template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context, 
memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""

template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context, 
memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer. 
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""

QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)

# Define the retrieval QA chain
def build_qa_chain(prompt_template):
    qa_chain = RetrievalQA.from_chain_type(
        llm=chat_model,
        chain_type="stuff",
        retriever=retriever,
        chain_type_kwargs={"prompt": prompt_template}
    )
    tools = [
        Tool(
            name='Knowledge Base',
            func=qa_chain,
            description='Use this tool when answering general knowledge queries to get more information about the topic'
        )
    ]
    return qa_chain, tools

# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
    qa_chain, tools = build_qa_chain(prompt_template)
    agent = initialize_agent(
        agent='chat-conversational-react-description',
        tools=tools,
        llm=chat_model,
        verbose=False,
        max_iteration=5,
        early_stopping_method='generate',
        memory=conversational_memory
    )
    return agent

# Define the function to generate answers
def generate_answer(message, choice):
    logging.debug(f"generate_answer called with prompt_choice: {choice}")
    
    if choice == "Details":
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
    elif choice == "Conversational":
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
    else:
        logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
        agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
    response = agent(message)

    # Extract addresses for mapping regardless of the choice
    addresses = extract_addresses(response['output'])
    return response['output'], addresses

def bot(history, choice, tts_model):
    if not history:
        return history
    response, addresses = generate_answer(history[-1][0], choice)
    history[-1][1] = ""
    
    # Generate audio for the entire response in a separate thread
    with concurrent.futures.ThreadPoolExecutor() as executor:
        if tts_model == "ElevenLabs":
            audio_future = executor.submit(generate_audio_elevenlabs, response)
        else:
            audio_future = executor.submit(generate_audio_parler_tts, response)
        
        for character in response:
            history[-1][1] += character
            time.sleep(0.05)  # Adjust the speed of text appearance
            yield history, None
        
        audio_path = audio_future.result()
        yield history, audio_path

def add_message(history, message):
    history.append((message, None))
    return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def extract_addresses(response):
    if not isinstance(response, str):
        response = str(response)
    address_patterns = [
        r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
        r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,\sAL\s\d{5})',
        r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
        r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
        r'(\d{2}.*\sStreets)',
        r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})'
        r'([a-zA-Z]\s Birmingham)'
    ]
    addresses = []
    for pattern in address_patterns:
        addresses.extend(re.findall(pattern, response))
    return addresses

all_addresses = []

def generate_map(location_names):
    global all_addresses
    all_addresses.extend(location_names)
    
    api_key = os.environ['GOOGLEMAPS_API_KEY']
    gmaps = GoogleMapsClient(key=api_key)
    
    m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
    
    for location_name in all_addresses:
        geocode_result = gmaps.geocode(location_name)
        if geocode_result:
            location = geocode_result[0]['geometry']['location']
            folium.Marker(
                [location['lat'], location['lng']],
                tooltip=f"{geocode_result[0]['formatted_address']}"
            ).add_to(m)
    
    map_html = m._repr_html_()
    return map_html

def fetch_local_news():
    api_key = os.environ['SERP_API']
    url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
    response = requests.get(url)
    if response.status_code == 200:
        results = response.json().get("news_results", [])
        news_html = """
        <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
        <style>
            .news-item {
                font-family: 'Verdana', sans-serif;
                color: #333;
                background-color: #f0f8ff;
                margin-bottom: 15px;
                padding: 10px;
                border-radius: 5px;
                transition: box-shadow 0.3s ease, background-color 0.3s ease;
                font-weight: bold;
            }
            .news-item:hover {
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
                background-color: #e6f7ff;
            }
            .news-item a {
                color: #1E90FF;
                text-decoration: none;
                font-weight: bold;
            }
            .news-item a:hover {
                text-decoration: underline;
            }
            .news-preview {
                position: absolute;
                display: none;
                border: 1px solid #ccc;
                border-radius: 5px;
                box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
                background-color: white;
                z-index: 1000;
                max-width: 300px;
                padding: 10px;
                font-family: 'Verdana', sans-serif;
                color: #333;
            }
        </style>
        <script>
            function showPreview(event, previewContent) {
                var previewBox = document.getElementById('news-preview');
                previewBox.innerHTML = previewContent;
                previewBox.style.left = event.pageX + 'px';
                previewBox.style.top = event.pageY + 'px';
                previewBox.style.display = 'block';
            }
            function hidePreview() {
                var previewBox = document.getElementById('news-preview');
                previewBox.style.display = 'none';
            }
        </script>
        <div id="news-preview" class="news-preview"></div>
        """
        for index, result in enumerate(results[:7]):
            title = result.get("title", "No title")
            link = result.get("link", "#")
            snippet = result.get("snippet", "")
            news_html += f"""
            <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
                <a href='{link}' target='_blank'>{index + 1}. {title}</a>
                <p>{snippet}</p>
            </div>
            """
        return news_html
    else:
        return "<p>Failed to fetch local news</p>"

# Voice Control
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer

model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
                                                  #low_cpu_mem_usage=True,
                                                  use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)

# Optimized ASR pipeline
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)

base_audio_drive = "/data/audio"

import numpy as np

def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    y = y.astype(np.float32) / np.max(np.abs(y))

    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)

    full_text = result.get("text", "")
    
    return stream, full_text, result

def update_map_with_response(history):
    if not history:
        return ""
    response = history[-1][1]
    addresses = extract_addresses(response)
    return generate_map(addresses)

def clear_textbox():
    return "" 

def show_map_if_details(history,choice):
    if choice in ["Details", "Conversational"]:
        return gr.update(visible=True), update_map_with_response(history)
    else:
        return gr.update(visible=False), ""

def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'  # Replace with your voice ID
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,  # Adjust style for more romantic tone
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                f.write(chunk)
            temp_audio_path = f.name
        logging.debug(f"Audio saved to {temp_audio_path}")
        return temp_audio_path
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None

def generate_audio_parler_tts(text):
    model_id = 'parler-tts/parler_tts_mini_v0.1'
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    try:
        model = ParlerTTSForConditionalGeneration.from_pretrained(model_id).to(device)
    except Exception as e:
        print(f"Error loading Parler TTS model: {e}")
        return None

    tokenizer = AutoTokenizer.from_pretrained(model_id)

    description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."

    try:
        input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
        prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)
    except Exception as e:
        print(f"Error tokenizing input: {e}")
        return None

    max_input_length = model.config.n_positions - input_ids.shape[1]
    segments = [prompt_input_ids[0][i:i+max_input_length] for i in range(0, prompt_input_ids.shape[1], max_input_length)]
    
    audio_segments = []
    for segment in segments:
        segment = segment.unsqueeze(0)
        try:
            generation = model.generate(input_ids=input_ids, prompt_input_ids=segment)
        except Exception as e:
            print(f"Error generating audio segment: {e}")
            return None

        audio_arr = generation.cpu().numpy().squeeze()
        audio_segments.append(audio_arr)
    
    full_audio = np.concatenate(audio_segments)
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        sf.write(f.name, full_audio, model.config.sampling_rate)
        temp_audio_path = f.name

    logging.debug(f"Audio saved to {temp_audio_path}")
    return temp_audio_path

# Stable Diffusion setup
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")

def generate_image(prompt):
    image = pipe(
        prompt,
        negative_prompt="",
        num_inference_steps=28,
        guidance_scale=3.0,
    ).images[0]
    return image

# Hardcoded prompt for image generation
hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in th night, michael mann style in omaha enticing the consumer to buy this product"
hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."

def update_images():
    image_1 = generate_image(hardcoded_prompt_1)
    image_2 = generate_image(hardcoded_prompt_2)
    image_3 = generate_image(hardcoded_prompt_3)
    return image_1, image_2, image_3

with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
    
    with gr.Row():
        with gr.Column():
            state = gr.State()
            
            chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
            choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
            tts_choice = gr.Radio(label="Select TTS Model", choices=["ElevenLabs", "Parler TTS"], value="Parler TTS")
            
            gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
            chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
            chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
            bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
            bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
            chatbot.like(print_like_dislike, None, None)
            clear_button = gr.Button("Clear")
            clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
           
            
            audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
            audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")

            # gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
            # location_output = gr.HTML()
            # bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
        
        # with gr.Column():
        #     weather_output = gr.HTML(value=fetch_local_weather())
        #     news_output = gr.HTML(value=fetch_local_news())
        #     news_output = gr.HTML(value=fetch_local_events())
            
        with gr.Column():
            
            image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
            image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
            image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)


            refresh_button = gr.Button("Refresh Images")
            refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
     
demo.queue()
demo.launch(share=True)