Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
import torch
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
@@ -186,7 +186,18 @@ def retrieval():
|
|
186 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
187 |
|
188 |
st.markdown('### Target')
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
col1, col2, col3, col4 = st.columns(4)
|
191 |
with col2:
|
192 |
sequence = st.text_input('Enter query amino-acid sequence', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
@@ -247,6 +258,7 @@ def retrieval():
|
|
247 |
mol = Chem.MolFromSmiles(dummy_smiles[j])
|
248 |
mol_img = Chem.Draw.MolToImage(mol)
|
249 |
st.image(mol_img)
|
|
|
250 |
|
251 |
'''
|
252 |
def display_protein():
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
#import torch
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
|
|
186 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
187 |
|
188 |
st.markdown('### Target')
|
189 |
+
|
190 |
+
st.write(f'The top-{selected_k} most active drug coupounds from {selected_dataset} predicted by HyperPCM are: ')
|
191 |
+
dummy_smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O', 'COc1cc(C=O)ccc1O', 'CC(=O)Nc1ccc(O)cc1', 'CC(=O)Nc1ccc(OS(=O)(=O)O)cc1', 'CC(=O)Nc1ccc(O[C@@H]2O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]2O)cc1']
|
192 |
+
cols = st.columns(5)
|
193 |
+
for j, col in enumerate(cols):
|
194 |
+
with col:
|
195 |
+
for i in range(int(selected_k/5)):
|
196 |
+
mol = Chem.MolFromSmiles(dummy_smiles[j])
|
197 |
+
mol_img = Chem.Draw.MolToImage(mol)
|
198 |
+
st.image(mol_img)
|
199 |
+
|
200 |
+
'''
|
201 |
col1, col2, col3, col4 = st.columns(4)
|
202 |
with col2:
|
203 |
sequence = st.text_input('Enter query amino-acid sequence', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
|
|
258 |
mol = Chem.MolFromSmiles(dummy_smiles[j])
|
259 |
mol_img = Chem.Draw.MolToImage(mol)
|
260 |
st.image(mol_img)
|
261 |
+
'''
|
262 |
|
263 |
'''
|
264 |
def display_protein():
|