emmas96 commited on
Commit
e3bf276
·
1 Parent(s): 065c4cc

add lenselink retrieval dataset

Browse files
Files changed (1) hide show
  1. src/dataset.py +92 -0
src/dataset.py CHANGED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import pickle
4
+ import numpy as np
5
+ from sklearn.preprocessing import StandardScaler
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch.utils.data import Dataset
10
+
11
+
12
+ def collate_target(elem_dicts):
13
+ """ Data loading for interactions based on protein target. """
14
+ batch = {'pids': [], 'targets': torch.Tensor(), 'mids': [], 'drugs': torch.Tensor()}
15
+ labels = torch.Tensor()
16
+
17
+ for i, elem_dict in enumerate(elem_dicts):
18
+
19
+ labels = torch.cat((labels, torch.tensor(elem_dict['label'])), 0)
20
+
21
+ batch['mids'].append(elem_dict['mid'])
22
+ drug = torch.tensor(elem_dict['drug']).float().unsqueeze(0)
23
+ batch['drugs'] = drug if len(batch['drugs']) == 0 else torch.cat((batch['drugs'], drug), 0)
24
+
25
+ batch['pids'].append(elem_dict['pid'])
26
+ if i == 0:
27
+ batch['targets'] = torch.tensor(elem_dict['target']).float()
28
+
29
+ batch['drugs'] = batch['drugs'].unsqueeze(0)
30
+
31
+ return batch, labels
32
+
33
+
34
+ class DrugRetrieval(Dataset):
35
+
36
+ def __init__(self, data_path, query_target, query_embedding, drug_encoder='CDDD', target_encoder='SeqVec'):
37
+ super(DrugRetrieval, self).__init__()
38
+ self.data_path = data_path
39
+ self.remove_batch = True
40
+
41
+ assert os.path.exists(os.path.join(self.data_path, f'processed/{drug_encoder}_encoding.pickle')), 'Drug embeddings not available.'
42
+ assert os.path.exists(os.path.join(self.data_path, f'processed/{target_encoder}_encoding_train.pickle')), 'Context target embeddings not available.'
43
+
44
+ # Drugs
45
+ emb_dict = self.get_embeddings(encoder_name=drug_encoder)
46
+ self.drug_ids = list(emb_dict.keys())
47
+ self.drug_embeddings = list(emb_dict.values())
48
+
49
+ # Context
50
+ self.target_scaler = StandardScaler()
51
+ context = self.get_embeddings(encoder_name=target_encoder)
52
+ self.context = self.standardize(embeddings=context)
53
+
54
+ # Query target
55
+ self.query_target = query_target
56
+ self.query_embedding = self.target_scaler.transform([query_embedding.tolist()])
57
+
58
+ def __getitem__(self, item):
59
+ return {
60
+ 'pid': self.query_target,
61
+ 'target': self.query_embedding,
62
+ 'mid': self.drug_ids[item],
63
+ 'drug': self.drug_embeddings[item],
64
+ 'label': [0],
65
+ }
66
+
67
+ def get_target_memory(self, exclude_pids=None):
68
+ memory = list(self.context.values())
69
+ return torch.tensor(np.stack(memory), dtype=torch.float32)
70
+
71
+ def __len__(self):
72
+ return len(self.drug_ids)
73
+
74
+ def get_embeddings(self, encoder_name):
75
+ with open(os.path.join(self.data_path, f'processed/{encoder_name}_encoding{"_train" if encoder_name == "SeqVec" else ""}.pickle'), 'rb') as handle:
76
+ embeddings = pickle.load(handle)
77
+ return embeddings
78
+
79
+ def standardize(self, embeddings):
80
+ split_embeddings = []
81
+ unique_ids = embeddings.keys()
82
+ for unique_id in unique_ids:
83
+ split_embeddings.append(embeddings[unique_id].tolist())
84
+
85
+ self.target_scaler.fit(split_embeddings)
86
+ scaled_embeddings = self.target_scaler.transform(split_embeddings)
87
+
88
+ new_dict = {}
89
+ for unique_id, emb in zip(unique_ids, scaled_embeddings):
90
+ new_dict[unique_id] = emb
91
+ return new_dict
92
+