add lenselink retrieval dataset
Browse files- src/dataset.py +92 -0
src/dataset.py
CHANGED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn.preprocessing import StandardScaler
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch.utils.data import Dataset
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def collate_target(elem_dicts):
|
| 13 |
+
""" Data loading for interactions based on protein target. """
|
| 14 |
+
batch = {'pids': [], 'targets': torch.Tensor(), 'mids': [], 'drugs': torch.Tensor()}
|
| 15 |
+
labels = torch.Tensor()
|
| 16 |
+
|
| 17 |
+
for i, elem_dict in enumerate(elem_dicts):
|
| 18 |
+
|
| 19 |
+
labels = torch.cat((labels, torch.tensor(elem_dict['label'])), 0)
|
| 20 |
+
|
| 21 |
+
batch['mids'].append(elem_dict['mid'])
|
| 22 |
+
drug = torch.tensor(elem_dict['drug']).float().unsqueeze(0)
|
| 23 |
+
batch['drugs'] = drug if len(batch['drugs']) == 0 else torch.cat((batch['drugs'], drug), 0)
|
| 24 |
+
|
| 25 |
+
batch['pids'].append(elem_dict['pid'])
|
| 26 |
+
if i == 0:
|
| 27 |
+
batch['targets'] = torch.tensor(elem_dict['target']).float()
|
| 28 |
+
|
| 29 |
+
batch['drugs'] = batch['drugs'].unsqueeze(0)
|
| 30 |
+
|
| 31 |
+
return batch, labels
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class DrugRetrieval(Dataset):
|
| 35 |
+
|
| 36 |
+
def __init__(self, data_path, query_target, query_embedding, drug_encoder='CDDD', target_encoder='SeqVec'):
|
| 37 |
+
super(DrugRetrieval, self).__init__()
|
| 38 |
+
self.data_path = data_path
|
| 39 |
+
self.remove_batch = True
|
| 40 |
+
|
| 41 |
+
assert os.path.exists(os.path.join(self.data_path, f'processed/{drug_encoder}_encoding.pickle')), 'Drug embeddings not available.'
|
| 42 |
+
assert os.path.exists(os.path.join(self.data_path, f'processed/{target_encoder}_encoding_train.pickle')), 'Context target embeddings not available.'
|
| 43 |
+
|
| 44 |
+
# Drugs
|
| 45 |
+
emb_dict = self.get_embeddings(encoder_name=drug_encoder)
|
| 46 |
+
self.drug_ids = list(emb_dict.keys())
|
| 47 |
+
self.drug_embeddings = list(emb_dict.values())
|
| 48 |
+
|
| 49 |
+
# Context
|
| 50 |
+
self.target_scaler = StandardScaler()
|
| 51 |
+
context = self.get_embeddings(encoder_name=target_encoder)
|
| 52 |
+
self.context = self.standardize(embeddings=context)
|
| 53 |
+
|
| 54 |
+
# Query target
|
| 55 |
+
self.query_target = query_target
|
| 56 |
+
self.query_embedding = self.target_scaler.transform([query_embedding.tolist()])
|
| 57 |
+
|
| 58 |
+
def __getitem__(self, item):
|
| 59 |
+
return {
|
| 60 |
+
'pid': self.query_target,
|
| 61 |
+
'target': self.query_embedding,
|
| 62 |
+
'mid': self.drug_ids[item],
|
| 63 |
+
'drug': self.drug_embeddings[item],
|
| 64 |
+
'label': [0],
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
def get_target_memory(self, exclude_pids=None):
|
| 68 |
+
memory = list(self.context.values())
|
| 69 |
+
return torch.tensor(np.stack(memory), dtype=torch.float32)
|
| 70 |
+
|
| 71 |
+
def __len__(self):
|
| 72 |
+
return len(self.drug_ids)
|
| 73 |
+
|
| 74 |
+
def get_embeddings(self, encoder_name):
|
| 75 |
+
with open(os.path.join(self.data_path, f'processed/{encoder_name}_encoding{"_train" if encoder_name == "SeqVec" else ""}.pickle'), 'rb') as handle:
|
| 76 |
+
embeddings = pickle.load(handle)
|
| 77 |
+
return embeddings
|
| 78 |
+
|
| 79 |
+
def standardize(self, embeddings):
|
| 80 |
+
split_embeddings = []
|
| 81 |
+
unique_ids = embeddings.keys()
|
| 82 |
+
for unique_id in unique_ids:
|
| 83 |
+
split_embeddings.append(embeddings[unique_id].tolist())
|
| 84 |
+
|
| 85 |
+
self.target_scaler.fit(split_embeddings)
|
| 86 |
+
scaled_embeddings = self.target_scaler.transform(split_embeddings)
|
| 87 |
+
|
| 88 |
+
new_dict = {}
|
| 89 |
+
for unique_id, emb in zip(unique_ids, scaled_embeddings):
|
| 90 |
+
new_dict[unique_id] = emb
|
| 91 |
+
return new_dict
|
| 92 |
+
|