change layout of about page
Browse files
app.py
CHANGED
@@ -78,63 +78,48 @@ def retrieval():
|
|
78 |
|
79 |
with col2:
|
80 |
selected_encoder = st.selectbox(
|
81 |
-
'Select target encoder',('SeqVec'
|
82 |
)
|
83 |
if sequence:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
st.success('Encoding complete.')
|
102 |
-
else:
|
103 |
-
query_embedding = None
|
104 |
-
st.image('figures/protein_encoder.png')
|
105 |
-
st.warning('Choose encoder above...')
|
106 |
|
107 |
with col3:
|
108 |
selected_database = st.selectbox(
|
109 |
-
'Select database',('Lenselink', '
|
110 |
)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
st.success('Data loaded.')
|
120 |
-
else:
|
121 |
-
dataset = None
|
122 |
-
dataloader = None
|
123 |
-
st.warning('Choose database above...')
|
124 |
|
125 |
with col4:
|
126 |
selected_encoder = st.selectbox(
|
127 |
-
'Select drug encoder',('CDDD'
|
128 |
)
|
129 |
-
|
130 |
-
|
131 |
-
st.image('figures/molecule_encoder_done.png')
|
132 |
-
st.success('Encoding complete.')
|
133 |
-
else:
|
134 |
-
st.image('figures/molecule_encoder.png')
|
135 |
-
st.warning('Choose encoder above...')
|
136 |
|
137 |
-
if sequence == ex_target:
|
138 |
st.markdown('### Inference')
|
139 |
|
140 |
progress_text = "HyperPCM is predicting the QSAR model for the query protein target. Please wait."
|
@@ -144,7 +129,7 @@ def retrieval():
|
|
144 |
st.markdown('### Retrieval')
|
145 |
|
146 |
selected_k = st.slider(f'Top-k most active drug compounds {selected_database} predicted by HyperPCM are, for k = ', 5, 20, 5, 5)
|
147 |
-
|
148 |
results = pd.read_csv('data/Lenselink/processed/ex_results.csv')
|
149 |
|
150 |
cols = st.columns(5)
|
@@ -155,7 +140,7 @@ def retrieval():
|
|
155 |
mol_img = Chem.Draw.MolToImage(mol)
|
156 |
st.image(mol_img, caption=f"{results.loc[j + 5*i, 'Prediction']:.2f}")
|
157 |
|
158 |
-
st.download_button('Download retrieved drug compounds.', results.head(selected_k).to_csv(index=False).encode('utf-8'), file_name='retrieved_drugs.csv')
|
159 |
|
160 |
elif query_embedding is not None:
|
161 |
st.markdown('### Inference')
|
@@ -205,14 +190,23 @@ def retrieval():
|
|
205 |
mol_img = Chem.Draw.MolToImage(mol)
|
206 |
st.image(mol_img, caption=f"{results.loc[j + 5*i, 'Prediction']:.2f}")
|
207 |
|
208 |
-
st.download_button('Download retrieved drug compounds.', results.head(selected_k).to_csv(index=False).encode('utf-8'), file_name='retrieved_drugs.csv')
|
209 |
-
|
|
|
|
|
210 |
page_names_to_func = {
|
211 |
'Retrieval': retrieval,
|
212 |
'About': about_page
|
213 |
}
|
214 |
|
215 |
-
selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
|
216 |
-
st.sidebar.markdown('')
|
217 |
-
page_names_to_func[selected_page]()
|
|
|
|
|
|
|
|
|
|
|
218 |
|
|
|
|
|
|
78 |
|
79 |
with col2:
|
80 |
selected_encoder = st.selectbox(
|
81 |
+
'Select target encoder',('SeqVec')
|
82 |
)
|
83 |
if sequence:
|
84 |
+
st.image('figures/protein_encoder_done.png')
|
85 |
+
with st.spinner('Encoding in progress...'):
|
86 |
+
|
87 |
+
with open(os.path.join(data_path, f'Lenselink/processed/SeqVec_encoding_test.pickle'), 'rb') as handle:
|
88 |
+
test_set = pickle.load(handle)
|
89 |
+
|
90 |
+
if sequence in list(test_set.keys()):
|
91 |
+
query_embedding = test_set[sequence]
|
92 |
+
else:
|
93 |
+
from bio_embeddings.embed import SeqVecEmbedder
|
94 |
+
encoder = SeqVecEmbedder()
|
95 |
+
embeddings = encoder.embed_batch([sequence])
|
96 |
+
for emb in embeddings:
|
97 |
+
query_embedding = encoder.reduce_per_protein(emb)
|
98 |
+
break
|
99 |
+
|
100 |
+
st.success('Encoding complete.')
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
with col3:
|
103 |
selected_database = st.selectbox(
|
104 |
+
'Select database',('Lenselink', 'Davis', 'DUD-E')
|
105 |
)
|
106 |
+
c1, c2 = st.columns(2)
|
107 |
+
with c2:
|
108 |
+
st.image('figures/multi_molecules.png', use_column_width='always') #, width=125)
|
109 |
+
with st.spinner('Loading data...'):
|
110 |
+
batch_size = 2048
|
111 |
+
dataset = DrugRetrieval(os.path.join(data_path, selected_database), sequence, query_embedding)
|
112 |
+
dataloader = DataLoader(dataset, num_workers=2, batch_size=batch_size, shuffle=False, collate_fn=collate_target)
|
113 |
+
st.success('Data loaded.')
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
with col4:
|
116 |
selected_encoder = st.selectbox(
|
117 |
+
'Select drug encoder',('CDDD')
|
118 |
)
|
119 |
+
st.image('figures/molecule_encoder_done.png')
|
120 |
+
st.success('Encoding complete.')
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
if sequence == ex_target and selected_database == 'Lenselink':
|
123 |
st.markdown('### Inference')
|
124 |
|
125 |
progress_text = "HyperPCM is predicting the QSAR model for the query protein target. Please wait."
|
|
|
129 |
st.markdown('### Retrieval')
|
130 |
|
131 |
selected_k = st.slider(f'Top-k most active drug compounds {selected_database} predicted by HyperPCM are, for k = ', 5, 20, 5, 5)
|
132 |
+
|
133 |
results = pd.read_csv('data/Lenselink/processed/ex_results.csv')
|
134 |
|
135 |
cols = st.columns(5)
|
|
|
140 |
mol_img = Chem.Draw.MolToImage(mol)
|
141 |
st.image(mol_img, caption=f"{results.loc[j + 5*i, 'Prediction']:.2f}")
|
142 |
|
143 |
+
st.download_button(f'Download retrieved drug compounds from the {selected_database} database.', results.head(selected_k).to_csv(index=False).encode('utf-8'), file_name='retrieved_drugs.csv')
|
144 |
|
145 |
elif query_embedding is not None:
|
146 |
st.markdown('### Inference')
|
|
|
190 |
mol_img = Chem.Draw.MolToImage(mol)
|
191 |
st.image(mol_img, caption=f"{results.loc[j + 5*i, 'Prediction']:.2f}")
|
192 |
|
193 |
+
st.download_button(f'Download retrieved drug compounds from the {selected_database} database.', results.head(selected_k).to_csv(index=False).encode('utf-8'), file_name='retrieved_drugs.csv')
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
page_names_to_func = {
|
198 |
'Retrieval': retrieval,
|
199 |
'About': about_page
|
200 |
}
|
201 |
|
202 |
+
#selected_page = st.sidebar.selectbox('Choose function', page_names_to_func.keys())
|
203 |
+
#st.sidebar.markdown('')
|
204 |
+
#page_names_to_func[selected_page]()
|
205 |
+
|
206 |
+
tab1, tab2 = st.tabs(page_names_to_func.keys())
|
207 |
+
|
208 |
+
with tab1:
|
209 |
+
page_names_to_func['Retrieval']()
|
210 |
|
211 |
+
with tab2:
|
212 |
+
page_names_to_func['About']()
|