pre-load results for example target
Browse files
app.py
CHANGED
|
@@ -132,7 +132,26 @@ def retrieval():
|
|
| 132 |
st.image('figures/molecule_encoder.png')
|
| 133 |
st.warning('Choose encoder above...')
|
| 134 |
|
| 135 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
st.markdown('### Inference')
|
| 137 |
|
| 138 |
progress_text = "HyperPCM is predicting the QSAR model for the query protein target. Please wait."
|
|
@@ -172,8 +191,6 @@ def retrieval():
|
|
| 172 |
results = results.sort_values(by='Prediction', ascending=False)
|
| 173 |
results = results.reset_index()
|
| 174 |
|
| 175 |
-
print(results.head(10))
|
| 176 |
-
|
| 177 |
cols = st.columns(5)
|
| 178 |
for j, col in enumerate(cols):
|
| 179 |
with col:
|
|
|
|
| 132 |
st.image('figures/molecule_encoder.png')
|
| 133 |
st.warning('Choose encoder above...')
|
| 134 |
|
| 135 |
+
if sequence == ex_target:
|
| 136 |
+
st.markdown('### Inference')
|
| 137 |
+
|
| 138 |
+
my_bar.progress(100, text="HyperPCM is predicting the QSAR model for the query protein target. Done.")
|
| 139 |
+
|
| 140 |
+
st.markdown('### Retrieval')
|
| 141 |
+
|
| 142 |
+
selected_k = st.slider(f'Top-k most active drug compounds {selected_database} predicted by HyperPCM are, for k = ', 5, 20, 5, 5)
|
| 143 |
+
|
| 144 |
+
results = pd.read_csv('data/Lenselink/processed/ex_results.csv')
|
| 145 |
+
|
| 146 |
+
cols = st.columns(5)
|
| 147 |
+
for j, col in enumerate(cols):
|
| 148 |
+
with col:
|
| 149 |
+
for i in range(int(selected_k/5)):
|
| 150 |
+
mol = Chem.MolFromSmiles(results.loc[j + 5*i, 'SMILES'])
|
| 151 |
+
mol_img = Chem.Draw.MolToImage(mol)
|
| 152 |
+
st.image(mol_img, caption=f"{results.loc[j + 5*i, 'Prediction']:.2f}")
|
| 153 |
+
|
| 154 |
+
elif query_embedding is not None:
|
| 155 |
st.markdown('### Inference')
|
| 156 |
|
| 157 |
progress_text = "HyperPCM is predicting the QSAR model for the query protein target. Please wait."
|
|
|
|
| 191 |
results = results.sort_values(by='Prediction', ascending=False)
|
| 192 |
results = results.reset_index()
|
| 193 |
|
|
|
|
|
|
|
| 194 |
cols = st.columns(5)
|
| 195 |
for j, col in enumerate(cols):
|
| 196 |
with col:
|