reformulations
Browse files
app.py
CHANGED
|
@@ -23,6 +23,7 @@ st.markdown(
|
|
| 23 |
🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti) 📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
|
| 24 |
"""
|
| 25 |
)
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
def about_page():
|
|
@@ -68,7 +69,7 @@ def predict_dti():
|
|
| 68 |
|
| 69 |
with mol_col2:
|
| 70 |
selected_encoder = st.selectbox(
|
| 71 |
-
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
|
| 72 |
)
|
| 73 |
if smiles:
|
| 74 |
if selected_encoder == 'CDDD':
|
|
@@ -90,14 +91,16 @@ def predict_dti():
|
|
| 90 |
checkpoint_path = hf_hub_download(REPO_ID, MOLBERT_MODEL_DIR)
|
| 91 |
molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
|
| 92 |
drug_embedding = molbert_model.transform([smiles])
|
|
|
|
|
|
|
| 93 |
else:
|
| 94 |
-
#st.write('No pre-trained version of HyperPCM is available for the chosen encoder.')
|
| 95 |
drug_embedding = None
|
| 96 |
st.image('molecule_encoder.png')
|
|
|
|
|
|
|
| 97 |
if drug_embedding is not None:
|
| 98 |
-
#st.write(f'{selected_encoder} embedding')
|
| 99 |
-
#st.write(embedding)
|
| 100 |
st.image('molecule_encoder_done.png')
|
|
|
|
| 101 |
|
| 102 |
with col2:
|
| 103 |
st.markdown('### Target')
|
|
@@ -108,53 +111,55 @@ def predict_dti():
|
|
| 108 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
| 109 |
|
| 110 |
if sequence:
|
| 111 |
-
|
| 112 |
-
st.error('Visualization of protein to be added soon.')
|
| 113 |
|
| 114 |
with prot_col2:
|
| 115 |
selected_encoder = st.selectbox(
|
| 116 |
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
|
| 117 |
)
|
|
|
|
| 118 |
if sequence:
|
| 119 |
if selected_encoder == 'SeqVec':
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
embeddings = encoder.embed_batch([sequence])
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
elif selected_encoder == 'UniRep':
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
| 133 |
elif selected_encoder == 'ESM-1b':
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
| 140 |
elif selected_encoder == 'ProtT5':
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
| 147 |
else:
|
| 148 |
-
st.warning('Chosen encoder above.')
|
| 149 |
prot_embedding = None
|
| 150 |
-
st.
|
|
|
|
| 151 |
if prot_embedding is not None:
|
| 152 |
-
#st.write(f'{selected_encoder} embedding')
|
| 153 |
-
#st.write(embedding)
|
| 154 |
st.image('protein_encoder_done.png')
|
|
|
|
| 155 |
|
| 156 |
if not drug_embedding or not prot_embedding:
|
| 157 |
-
st.error('
|
| 158 |
else:
|
| 159 |
st.warning('In the future inference will be run with HyperPCM on the given drug compound and protein target...')
|
| 160 |
|
|
@@ -164,26 +169,25 @@ def retrieval():
|
|
| 164 |
|
| 165 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
| 166 |
|
| 167 |
-
st.markdown('###
|
| 168 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
| 169 |
|
| 170 |
if sequence:
|
| 171 |
col1, col2 = st.columns(2)
|
| 172 |
with col1:
|
| 173 |
-
|
| 174 |
-
st.error('Visualization of protein to be added soon.')
|
| 175 |
|
| 176 |
with col2:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
with st.spinner('Currently encoding the query protein target with SeqVec...'):
|
| 183 |
embeddings = encoder.embed_batch([sequence])
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
| 187 |
st.success('Encoding complete.')
|
| 188 |
|
| 189 |
st.markdown('### Inference')
|
|
@@ -194,6 +198,7 @@ def retrieval():
|
|
| 194 |
for i in range(100):
|
| 195 |
time.sleep(0.1)
|
| 196 |
my_bar.progress(i + 1, text=progress_text)
|
|
|
|
| 197 |
|
| 198 |
st.markdown('### Retrieval')
|
| 199 |
|
|
|
|
| 23 |
🧬 Github: [ml-jku/hyper-dti](https://https://github.com/ml-jku/hyper-dti) 📝 NeurIPS 2022 AI4Science workshop paper: [OpenReview](https://openreview.net/forum?id=dIX34JWnIAL)\n
|
| 24 |
"""
|
| 25 |
)
|
| 26 |
+
st.error('WARNING! This app is currently under development and should not be used!')
|
| 27 |
|
| 28 |
|
| 29 |
def about_page():
|
|
|
|
| 69 |
|
| 70 |
with mol_col2:
|
| 71 |
selected_encoder = st.selectbox(
|
| 72 |
+
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT', 'Dummy')
|
| 73 |
)
|
| 74 |
if smiles:
|
| 75 |
if selected_encoder == 'CDDD':
|
|
|
|
| 91 |
checkpoint_path = hf_hub_download(REPO_ID, MOLBERT_MODEL_DIR)
|
| 92 |
molbert_model = MolBertFeaturizer(checkpoint_path, max_seq_len=500, embedding_type='average-1-cat-pooled')
|
| 93 |
drug_embedding = molbert_model.transform([smiles])
|
| 94 |
+
elif selected_encoder == 'Dummy':
|
| 95 |
+
drug_embedding = [0,1,2,3,4,5]
|
| 96 |
else:
|
|
|
|
| 97 |
drug_embedding = None
|
| 98 |
st.image('molecule_encoder.png')
|
| 99 |
+
st.warning('Choose encoder above...')
|
| 100 |
+
|
| 101 |
if drug_embedding is not None:
|
|
|
|
|
|
|
| 102 |
st.image('molecule_encoder_done.png')
|
| 103 |
+
st.success('Encoding complete.')
|
| 104 |
|
| 105 |
with col2:
|
| 106 |
st.markdown('### Target')
|
|
|
|
| 111 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
| 112 |
|
| 113 |
if sequence:
|
| 114 |
+
st.error('Visualization comming soon...')
|
|
|
|
| 115 |
|
| 116 |
with prot_col2:
|
| 117 |
selected_encoder = st.selectbox(
|
| 118 |
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
|
| 119 |
)
|
| 120 |
+
st.image('protein_encoder.png')
|
| 121 |
if sequence:
|
| 122 |
if selected_encoder == 'SeqVec':
|
| 123 |
+
with st.spinner('Encoding in progress...'):
|
| 124 |
+
from bio_embeddings.embed import SeqVecEmbedder
|
| 125 |
+
encoder = SeqVecEmbedder()
|
| 126 |
embeddings = encoder.embed_batch([sequence])
|
| 127 |
+
for emb in embeddings:
|
| 128 |
+
prot_embedding = encoder.reduce_per_protein(emb)
|
| 129 |
+
break
|
| 130 |
elif selected_encoder == 'UniRep':
|
| 131 |
+
with st.spinner('Encoding in progress...'):
|
| 132 |
+
from jax_unirep.utils import load_params
|
| 133 |
+
params = load_params()
|
| 134 |
+
from jax_unirep.featurize import get_reps
|
| 135 |
+
embedding, h_final, c_final = get_reps([sequence])
|
| 136 |
+
prot_embedding = embedding.mean(axis=0)
|
| 137 |
elif selected_encoder == 'ESM-1b':
|
| 138 |
+
with st.spinner('Encoding in progress...'):
|
| 139 |
+
from bio_embeddings.embed import ESM1bEmbedder
|
| 140 |
+
encoder = ESM1bEmbedder()
|
| 141 |
+
embeddings = encoder.embed_batch([sequence])
|
| 142 |
+
for emb in embeddings:
|
| 143 |
+
prot_embedding = encoder.reduce_per_protein(emb)
|
| 144 |
+
break
|
| 145 |
elif selected_encoder == 'ProtT5':
|
| 146 |
+
with st.spinner('Encoding in progress...'):
|
| 147 |
+
from bio_embeddings.embed import ProtTransT5XLU50Embedder
|
| 148 |
+
encoder = ProtTransT5XLU50Embedder()
|
| 149 |
+
embeddings = encoder.embed_batch([sequence])
|
| 150 |
+
for emb in embeddings:
|
| 151 |
+
prot_embedding = encoder.reduce_per_protein(emb)
|
| 152 |
+
break
|
| 153 |
else:
|
|
|
|
| 154 |
prot_embedding = None
|
| 155 |
+
st.warning('Chosen encoder above...')
|
| 156 |
+
|
| 157 |
if prot_embedding is not None:
|
|
|
|
|
|
|
| 158 |
st.image('protein_encoder_done.png')
|
| 159 |
+
st.success('Encoding complete.')
|
| 160 |
|
| 161 |
if not drug_embedding or not prot_embedding:
|
| 162 |
+
st.error('Waiting for both drug and target embeddings to be computed...')
|
| 163 |
else:
|
| 164 |
st.warning('In the future inference will be run with HyperPCM on the given drug compound and protein target...')
|
| 165 |
|
|
|
|
| 169 |
|
| 170 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
| 171 |
|
| 172 |
+
st.markdown('### Target')
|
| 173 |
sequence = st.text_input('Enter the amino-acid sequence of the query protein target', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
| 174 |
|
| 175 |
if sequence:
|
| 176 |
col1, col2 = st.columns(2)
|
| 177 |
with col1:
|
| 178 |
+
st.error('Visualization coming soon...')
|
|
|
|
| 179 |
|
| 180 |
with col2:
|
| 181 |
+
st.image('protein_encoder.png')
|
| 182 |
+
|
| 183 |
+
with st.spinner('Encoding in progress...'):
|
| 184 |
+
from bio_embeddings.embed import SeqVecEmbedder
|
| 185 |
+
encoder = SeqVecEmbedder()
|
|
|
|
| 186 |
embeddings = encoder.embed_batch([sequence])
|
| 187 |
+
for emb in embeddings:
|
| 188 |
+
embedding = encoder.reduce_per_protein(emb)
|
| 189 |
+
break
|
| 190 |
+
st.image('protein_encoder_done.png')
|
| 191 |
st.success('Encoding complete.')
|
| 192 |
|
| 193 |
st.markdown('### Inference')
|
|
|
|
| 198 |
for i in range(100):
|
| 199 |
time.sleep(0.1)
|
| 200 |
my_bar.progress(i + 1, text=progress_text)
|
| 201 |
+
my_bar.progress(100, text="HyperPCM predicts the QSAR model for the query protein target. Done.)
|
| 202 |
|
| 203 |
st.markdown('### Retrieval')
|
| 204 |
|