final touches to dummy functionalities
Browse files
app.py
CHANGED
@@ -51,7 +51,7 @@ def about_page():
|
|
51 |
def predict_dti():
|
52 |
st.markdown('## Predict drug-target interaction')
|
53 |
|
54 |
-
st.
|
55 |
|
56 |
col1, col2 = st.columns(2)
|
57 |
|
@@ -162,23 +162,37 @@ def predict_dti():
|
|
162 |
if drug_embedding is None or prot_embedding is None:
|
163 |
st.warning('Waiting for both drug and target embeddings to be computed...')
|
164 |
else:
|
165 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
|
168 |
def retrieval():
|
169 |
-
st.markdown('## Retrieve top-k')
|
170 |
|
171 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
172 |
|
173 |
st.markdown('### Target')
|
174 |
-
sequence = st.text_input('Enter query amino-acid sequence', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
st.error('Visualization coming soon...')
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
182 |
with st.spinner('Encoding in progress...'):
|
183 |
from bio_embeddings.embed import SeqVecEmbedder
|
184 |
encoder = SeqVecEmbedder()
|
@@ -186,7 +200,6 @@ def retrieval():
|
|
186 |
for emb in embeddings:
|
187 |
embedding = encoder.reduce_per_protein(emb)
|
188 |
break
|
189 |
-
st.image('protein_encoder_done.png')
|
190 |
st.success('Encoding complete.')
|
191 |
|
192 |
st.markdown('### Inference')
|
@@ -222,7 +235,7 @@ def retrieval():
|
|
222 |
st.image(mol_img)
|
223 |
|
224 |
def display_protein():
|
225 |
-
st.markdown('## Display protein')
|
226 |
st.write('In the future this page will display the ESM predicted sequence of a protein target.')
|
227 |
|
228 |
st.markdown('### Target')
|
|
|
51 |
def predict_dti():
|
52 |
st.markdown('## Predict drug-target interaction')
|
53 |
|
54 |
+
st.text('In the future this page can be used to predict interactions betweek a query drug compound and a query protein target by the HyperPCM mdoel.')
|
55 |
|
56 |
col1, col2 = st.columns(2)
|
57 |
|
|
|
162 |
if drug_embedding is None or prot_embedding is None:
|
163 |
st.warning('Waiting for both drug and target embeddings to be computed...')
|
164 |
else:
|
165 |
+
st.markdown('### Inference')
|
166 |
+
|
167 |
+
import time
|
168 |
+
progress_text = "HyperPCM predicts the interaction between the query drug compound toward the query protein target. Please wait."
|
169 |
+
my_bar = st.progress(0, text=progress_text)
|
170 |
+
for i in range(100):
|
171 |
+
time.sleep(0.1)
|
172 |
+
my_bar.progress(i + 1, text=progress_text)
|
173 |
+
my_bar.progress(100, text="HyperPCM predicts the interaction between the query drug compound toward the query protein target. Done.")
|
174 |
+
|
175 |
+
st.markdown('### Interaction')
|
176 |
+
st.text('HyperPCM predicts an activity of xxx pChEMBL.')
|
177 |
|
178 |
|
179 |
def retrieval():
|
180 |
+
st.markdown('## Retrieve top-k most active drug compounds')
|
181 |
|
182 |
st.write('In the furute this page will retrieve the top-k drug compounds that are predicted to have the highest activity toward the given protein target from either the Lenselink or Davis datasets.')
|
183 |
|
184 |
st.markdown('### Target')
|
|
|
185 |
|
186 |
+
col1, col2, col3, col4 = st.columns(4)
|
187 |
+
with col2:
|
188 |
+
sequence = st.text_input('Enter query amino-acid sequence', value='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA', placeholder='HXHVWPVQDAKARFSEFLDACITEGPQIVSRRGAEEAVLVPIGEWRRLQAAA')
|
189 |
+
if sequence:
|
190 |
st.error('Visualization coming soon...')
|
191 |
+
|
192 |
+
with col3:
|
193 |
+
if sequence:
|
194 |
+
st.image('protein_encoder_done.png')
|
195 |
+
|
196 |
with st.spinner('Encoding in progress...'):
|
197 |
from bio_embeddings.embed import SeqVecEmbedder
|
198 |
encoder = SeqVecEmbedder()
|
|
|
200 |
for emb in embeddings:
|
201 |
embedding = encoder.reduce_per_protein(emb)
|
202 |
break
|
|
|
203 |
st.success('Encoding complete.')
|
204 |
|
205 |
st.markdown('### Inference')
|
|
|
235 |
st.image(mol_img)
|
236 |
|
237 |
def display_protein():
|
238 |
+
st.markdown('## Display protein structure')
|
239 |
st.write('In the future this page will display the ESM predicted sequence of a protein target.')
|
240 |
|
241 |
st.markdown('### Target')
|