emmas96 commited on
Commit
1107c98
·
1 Parent(s): e181d98

use precomputed embeddings

Browse files
Files changed (1) hide show
  1. app.py +20 -8
app.py CHANGED
@@ -61,10 +61,16 @@ def display_dti():
61
  'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
62
  )
63
  if selected_encoder == 'CDDD':
64
- from cddd.inference import InferenceModel
65
- CDDD_MODEL_DIR = 'src/encoders/cddd'
66
- cddd_model = InferenceModel(CDDD_MODEL_DIR)
67
- embedding = cddd_model.seq_to_emb([smiles])
 
 
 
 
 
 
68
  elif selected_encoder == 'MolBERT':
69
  from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
70
  from huggingface_hub import hf_hub_download
@@ -91,10 +97,16 @@ def display_dti():
91
  'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
92
  )
93
  if selected_encoder == 'SeqVec':
94
- from bio_embeddings.embed import SeqVecEmbedder
95
- encoder = SeqVecEmbedder()
96
- embedding = encoder([sequence])
97
- embedding = encoder.reduce_per_protein(embedding)
 
 
 
 
 
 
98
  elif selected_encoder == 'UniRep':
99
  from jax_unirep.utils import load_params
100
  params = load_params()
 
61
  'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
62
  )
63
  if selected_encoder == 'CDDD':
64
+ #from cddd.inference import InferenceModel
65
+ #CDDD_MODEL_DIR = 'src/encoders/cddd'
66
+ #cddd_model = InferenceModel(CDDD_MODEL_DIR)
67
+ #embedding = cddd_model.seq_to_emb([smiles])
68
+ from huggingface_hub import hf_hub_download
69
+ precomputed_embs = f'{selected_encoder}_encoding.csv'
70
+ REPO_ID = "emmas96/Lenselink"
71
+ embs_path = hf_hub_download(REPO_ID, precomputed_embs)
72
+ embs = pd.read_csv(embs_path)
73
+ embedding = embs[smiles]
74
  elif selected_encoder == 'MolBERT':
75
  from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
76
  from huggingface_hub import hf_hub_download
 
97
  'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
98
  )
99
  if selected_encoder == 'SeqVec':
100
+ #from bio_embeddings.embed import SeqVecEmbedder
101
+ #encoder = SeqVecEmbedder()
102
+ #embedding = encoder([sequence])
103
+ #embedding = encoder.reduce_per_protein(embedding)
104
+ from huggingface_hub import hf_hub_download
105
+ precomputed_embs = f'{selected_encoder}_encoding.csv'
106
+ REPO_ID = "emmas96/Lenselink"
107
+ embs_path = hf_hub_download(REPO_ID, precomputed_embs)
108
+ embs = pd.read_csv(embs_path)
109
+ embedding = embs[sequence]
110
  elif selected_encoder == 'UniRep':
111
  from jax_unirep.utils import load_params
112
  params = load_params()