use precomputed embeddings
Browse files
app.py
CHANGED
@@ -61,10 +61,16 @@ def display_dti():
|
|
61 |
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
|
62 |
)
|
63 |
if selected_encoder == 'CDDD':
|
64 |
-
from cddd.inference import InferenceModel
|
65 |
-
CDDD_MODEL_DIR = 'src/encoders/cddd'
|
66 |
-
cddd_model = InferenceModel(CDDD_MODEL_DIR)
|
67 |
-
embedding = cddd_model.seq_to_emb([smiles])
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
elif selected_encoder == 'MolBERT':
|
69 |
from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
|
70 |
from huggingface_hub import hf_hub_download
|
@@ -91,10 +97,16 @@ def display_dti():
|
|
91 |
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
|
92 |
)
|
93 |
if selected_encoder == 'SeqVec':
|
94 |
-
from bio_embeddings.embed import SeqVecEmbedder
|
95 |
-
encoder = SeqVecEmbedder()
|
96 |
-
embedding = encoder([sequence])
|
97 |
-
embedding = encoder.reduce_per_protein(embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
elif selected_encoder == 'UniRep':
|
99 |
from jax_unirep.utils import load_params
|
100 |
params = load_params()
|
|
|
61 |
'Select encoder for drug compound',('None', 'CDDD', 'MolBERT')
|
62 |
)
|
63 |
if selected_encoder == 'CDDD':
|
64 |
+
#from cddd.inference import InferenceModel
|
65 |
+
#CDDD_MODEL_DIR = 'src/encoders/cddd'
|
66 |
+
#cddd_model = InferenceModel(CDDD_MODEL_DIR)
|
67 |
+
#embedding = cddd_model.seq_to_emb([smiles])
|
68 |
+
from huggingface_hub import hf_hub_download
|
69 |
+
precomputed_embs = f'{selected_encoder}_encoding.csv'
|
70 |
+
REPO_ID = "emmas96/Lenselink"
|
71 |
+
embs_path = hf_hub_download(REPO_ID, precomputed_embs)
|
72 |
+
embs = pd.read_csv(embs_path)
|
73 |
+
embedding = embs[smiles]
|
74 |
elif selected_encoder == 'MolBERT':
|
75 |
from molbert.utils.featurizer.molbert_featurizer import MolBertFeaturizer
|
76 |
from huggingface_hub import hf_hub_download
|
|
|
97 |
'Select encoder for protein target',('None', 'SeqVec', 'UniRep', 'ESM-1b', 'ProtT5')
|
98 |
)
|
99 |
if selected_encoder == 'SeqVec':
|
100 |
+
#from bio_embeddings.embed import SeqVecEmbedder
|
101 |
+
#encoder = SeqVecEmbedder()
|
102 |
+
#embedding = encoder([sequence])
|
103 |
+
#embedding = encoder.reduce_per_protein(embedding)
|
104 |
+
from huggingface_hub import hf_hub_download
|
105 |
+
precomputed_embs = f'{selected_encoder}_encoding.csv'
|
106 |
+
REPO_ID = "emmas96/Lenselink"
|
107 |
+
embs_path = hf_hub_download(REPO_ID, precomputed_embs)
|
108 |
+
embs = pd.read_csv(embs_path)
|
109 |
+
embedding = embs[sequence]
|
110 |
elif selected_encoder == 'UniRep':
|
111 |
from jax_unirep.utils import load_params
|
112 |
params = load_params()
|