Spaces:
Running
Running
Upload 3 files
Browse files- fine_tuning_number_one.py +103 -0
- fine_tuning_numer_two.py +97 -0
- requirements.txt +4 -0
fine_tuning_number_one.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Fine Tuning Number One.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1ICULTdmxijXHisMebXX5KmPzxzfZ2TtH
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
!pip install datasets
|
13 |
+
!pip install torch
|
14 |
+
!pip install -q -U transformers accelerate
|
15 |
+
!pip install transformers[torch]
|
16 |
+
!pip install accelerate -U
|
17 |
+
!pip install huggingface_hub
|
18 |
+
|
19 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, DataCollatorForLanguageModeling, TrainingArguments, Trainer
|
20 |
+
from datasets import load_dataset
|
21 |
+
|
22 |
+
# Load the dataset
|
23 |
+
datasetTrain = load_dataset("rcds/wikipedia-for-mask-filling", "original_512", trust_remote_code=True)
|
24 |
+
datasetTest = load_dataset("rcds/wikipedia-for-mask-filling", "original_4096", trust_remote_code=True)
|
25 |
+
|
26 |
+
# Load the pre-trained model and tokenizer
|
27 |
+
tokenizerOne = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
28 |
+
tokenizerTwo = AutoTokenizer.from_pretrained("distilbert/distilbert-base-cased")
|
29 |
+
|
30 |
+
# Tokenize the dataset
|
31 |
+
def tokenize_function_one(examples):
|
32 |
+
return tokenizerOne(examples["texts"], padding="max_length", truncation=True)
|
33 |
+
|
34 |
+
def tokenize_function_two(examples):
|
35 |
+
return tokenizerTwo(examples["texts"], padding="max_length", truncation=True, max_length=512)
|
36 |
+
|
37 |
+
# Make the datasets
|
38 |
+
tokenized_datasets_oneTrain = datasetTrain.map(tokenize_function_one, batched=True)
|
39 |
+
tokenized_datasets_oneTest = datasetTest.map(tokenize_function_one, batched=True)
|
40 |
+
tokenized_datasets_oneTrain = tokenized_datasets_oneTrain["train"].select(range(10000))
|
41 |
+
tokenized_datasets_oneTest = tokenized_datasets_oneTest["train"].select(range(2500))
|
42 |
+
|
43 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizerOne, mlm_probability=0.15)
|
44 |
+
training_args = TrainingArguments(
|
45 |
+
"test_trainer",
|
46 |
+
num_train_epochs=3,
|
47 |
+
per_device_train_batch_size=32,
|
48 |
+
per_device_eval_batch_size=32,
|
49 |
+
warmup_steps=500,
|
50 |
+
weight_decay=0.01,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Model One: google-bert/bert-base-cased
|
54 |
+
model_one = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased")
|
55 |
+
trainer_one = Trainer(
|
56 |
+
model=model_one,
|
57 |
+
args=training_args,
|
58 |
+
train_dataset=tokenized_datasets_oneTrain,
|
59 |
+
eval_dataset=tokenized_datasets_oneTest,
|
60 |
+
data_collator=data_collator,
|
61 |
+
)
|
62 |
+
trainer_one.train()
|
63 |
+
|
64 |
+
# Get your API token from HuggingFace.
|
65 |
+
api_token = "redacted"
|
66 |
+
|
67 |
+
from transformers import BertConfig, BertModel
|
68 |
+
|
69 |
+
model_one.push_to_hub("emma7897/bert_one", token = api_token)
|
70 |
+
tokenizerOne.push_to_hub("emma7897/bert_one", token = api_token)
|
71 |
+
|
72 |
+
# Make the datasets
|
73 |
+
tokenized_datasets_twoTrain = datasetTrain.map(tokenize_function_two, batched=True)
|
74 |
+
tokenized_datasets_twoTest = datasetTest.map(tokenize_function_two, batched=True)
|
75 |
+
tokenized_datasets_twoTrain = tokenized_datasets_twoTrain["train"].select(range(10000))
|
76 |
+
tokenized_datasets_twoTest = tokenized_datasets_twoTest["train"].select(range(2500))
|
77 |
+
|
78 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizerTwo, mlm_probability=0.15)
|
79 |
+
training_args = TrainingArguments(
|
80 |
+
"test_trainer",
|
81 |
+
num_train_epochs=3,
|
82 |
+
per_device_train_batch_size=48,
|
83 |
+
per_device_eval_batch_size=48,
|
84 |
+
warmup_steps=500,
|
85 |
+
weight_decay=0.01,
|
86 |
+
)
|
87 |
+
|
88 |
+
# Model Two: distilbert/distilbert-base-cased
|
89 |
+
model_two = AutoModelForMaskedLM.from_pretrained("distilbert/distilbert-base-cased")
|
90 |
+
trainer_two = Trainer(
|
91 |
+
model=model_two,
|
92 |
+
args=training_args,
|
93 |
+
train_dataset=tokenized_datasets_twoTrain,
|
94 |
+
eval_dataset=tokenized_datasets_twoTest,
|
95 |
+
data_collator=data_collator,
|
96 |
+
)
|
97 |
+
trainer_two.train()
|
98 |
+
|
99 |
+
from transformers import DistilBertConfig, DistilBertModel
|
100 |
+
|
101 |
+
# Push my DistilBert model to the Hub.
|
102 |
+
model_two.push_to_hub("emma7897/distilbert_one", token=api_token)
|
103 |
+
tokenizerTwo.push_to_hub("emma7897/distilbert_one", token=api_token)
|
fine_tuning_numer_two.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Fine Tuning Numer Two.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1iqPWMaXrktOsY2BwZNdQE8c1B4o1trit
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install datasets
|
11 |
+
!pip install torch
|
12 |
+
!pip install -q -U transformers accelerate
|
13 |
+
!pip install transformers[torch]
|
14 |
+
!pip install accelerate -U
|
15 |
+
!pip install huggingface_hub
|
16 |
+
|
17 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, DataCollatorForLanguageModeling, TrainingArguments, Trainer
|
18 |
+
from datasets import load_dataset
|
19 |
+
|
20 |
+
# Load the dataset
|
21 |
+
dataset = load_dataset("ajibawa-2023/Children-Stories-Collection", trust_remote_code=True)
|
22 |
+
|
23 |
+
# Load the pre-trained model and tokenizer
|
24 |
+
tokenizerOne = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
25 |
+
tokenizerTwo = AutoTokenizer.from_pretrained("distilbert/distilbert-base-cased")
|
26 |
+
|
27 |
+
# Tokenize the dataset
|
28 |
+
def tokenize_function_one(examples):
|
29 |
+
return tokenizerOne(examples["text"], padding="max_length", truncation=True)
|
30 |
+
|
31 |
+
def tokenize_function_two(examples):
|
32 |
+
return tokenizerTwo(examples["text"], padding="max_length", truncation=True, max_length=512)
|
33 |
+
|
34 |
+
tokenizedDatasetOne = dataset.map(tokenize_function_one, batched=True)
|
35 |
+
shuffled_dataset = tokenizedDatasetOne['train'].shuffle(seed=42)
|
36 |
+
tokenized_datasets_oneTrain = shuffled_dataset.select(range(10000))
|
37 |
+
tokenized_datasets_oneTest = shuffled_dataset.select(range(10000, 12500))
|
38 |
+
|
39 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizerOne, mlm_probability=0.15)
|
40 |
+
training_args = TrainingArguments(
|
41 |
+
"test_trainer",
|
42 |
+
num_train_epochs=3,
|
43 |
+
per_device_train_batch_size=32,
|
44 |
+
per_device_eval_batch_size=32,
|
45 |
+
warmup_steps=500,
|
46 |
+
weight_decay=0.01,
|
47 |
+
)
|
48 |
+
|
49 |
+
# Model One: google-bert/bert-base-cased
|
50 |
+
model_one = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-cased")
|
51 |
+
trainer_one = Trainer(
|
52 |
+
model=model_one,
|
53 |
+
args=training_args,
|
54 |
+
train_dataset=tokenized_datasets_oneTrain,
|
55 |
+
eval_dataset=tokenized_datasets_oneTest,
|
56 |
+
data_collator=data_collator,
|
57 |
+
)
|
58 |
+
trainer_one.train()
|
59 |
+
|
60 |
+
# Get your API token from HuggingFace.
|
61 |
+
api_token = "redacted"
|
62 |
+
|
63 |
+
from transformers import BertConfig, BertModel
|
64 |
+
|
65 |
+
model_one.push_to_hub("emma7897/bert_two", token = api_token)
|
66 |
+
tokenizerOne.push_to_hub("emma7897/bert_two", token = api_token)
|
67 |
+
|
68 |
+
tokenizedDatasetTwo = dataset.map(tokenize_function_two, batched=True)
|
69 |
+
shuffled_dataset = tokenizedDatasetTwo['train'].shuffle(seed=42)
|
70 |
+
tokenized_datasets_twoTrain = shuffled_dataset.select(range(10000))
|
71 |
+
tokenized_datasets_twoTest = shuffled_dataset.select(range(10000, 12500))
|
72 |
+
|
73 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizerTwo, mlm_probability=0.15)
|
74 |
+
training_args = TrainingArguments(
|
75 |
+
"test_trainer",
|
76 |
+
num_train_epochs=3,
|
77 |
+
per_device_train_batch_size=32,
|
78 |
+
per_device_eval_batch_size=32,
|
79 |
+
warmup_steps=500,
|
80 |
+
weight_decay=0.01,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Model Two: distilbert/distilbert-base-cased
|
84 |
+
model_two = AutoModelForMaskedLM.from_pretrained("distilbert/distilbert-base-cased")
|
85 |
+
trainer_two = Trainer(
|
86 |
+
model=model_two,
|
87 |
+
args=training_args,
|
88 |
+
train_dataset=tokenized_datasets_twoTrain,
|
89 |
+
eval_dataset=tokenized_datasets_twoTest,
|
90 |
+
data_collator=data_collator,
|
91 |
+
)
|
92 |
+
trainer_two.train()
|
93 |
+
|
94 |
+
from transformers import DistilBertConfig, DistilBertModel
|
95 |
+
|
96 |
+
model_two.push_to_hub("emma7897/distilbert_two", token=api_token)
|
97 |
+
tokenizerTwo.push_to_hub("emma7897/distilbert_two", token=api_token)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
nltk
|
4 |
+
datasets
|