import cv2 import numpy as np import gradio as gr def apply_gaussian_blur(frame, intensity): ksize = int(intensity) * 2 + 1 return cv2.GaussianBlur(frame, (ksize, ksize), 0) def apply_sharpening_filter(frame): kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) return cv2.filter2D(frame, -1, kernel) def apply_edge_detection(frame): return cv2.Canny(frame, 100, 200) def apply_invert_filter(frame): return cv2.bitwise_not(frame) def adjust_brightness_contrast(frame, alpha=1.0, beta=0): return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta) def apply_grayscale_filter(frame): return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) def apply_sepia_filter(frame): sepia_filter = np.array([[0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189]]) sepia_frame = cv2.transform(frame, sepia_filter) sepia_frame = np.clip(sepia_frame, 0, 255) return sepia_frame def apply_fall_filter(frame): fall_filter = np.array([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]) fall_frame = cv2.transform(frame, fall_filter) fall_frame = np.clip(fall_frame, 0, 255) return fall_frame def apply_filter(filter_types, input_image, blur_intensity=1, brightness=1.0, contrast=50): frame = input_image.copy() for filter_type in filter_types: if filter_type == "Gaussian Blur": frame = apply_gaussian_blur(frame, blur_intensity) elif filter_type == "Sharpen": frame = apply_sharpening_filter(frame) elif filter_type == "Edge Detection": frame = apply_edge_detection(frame) elif filter_type == "Invert": frame = apply_invert_filter(frame) elif filter_type == "Brightness/Contrast": frame = adjust_brightness_contrast(frame, alpha=brightness, beta=contrast) elif filter_type == "Grayscale": frame = apply_grayscale_filter(frame) elif filter_type == "Sepia": frame = apply_sepia_filter(frame) elif filter_type == "Sonbahar": frame = apply_fall_filter(frame) return frame with gr.Blocks() as demo: gr.Markdown("# Gelişmiş Web Kameradan Canlı Filtreleme") filter_types = gr.CheckboxGroup( label="Filtre Seçin", choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness/Contrast", "Grayscale", "Sepia", "Sonbahar"], value=["Gaussian Blur"] ) blur_intensity = gr.Slider(label="Gaussian Blur Yoğunluğu", minimum=1, maximum=10, step=1, value=1) brightness = gr.Slider(label="Parlaklık", minimum=0.5, maximum=2.0, step=0.1, value=1.0) contrast = gr.Slider(label="Kontrast", minimum=0, maximum=100, step=10, value=50) input_image = gr.Image(label="Resim Yükle", type="numpy") output_image = gr.Image(label="Filtre Uygulandı") apply_button = gr.Button("Filtreyi Uygula") apply_button.click(fn=apply_filter, inputs=[filter_types, input_image, blur_intensity, brightness, contrast], outputs=output_image) demo.launch()