Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,10 @@ import torch
|
|
| 3 |
import soundfile as sf
|
| 4 |
import spaces
|
| 5 |
import os
|
|
|
|
| 6 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 7 |
from speechbrain.pretrained import EncoderClassifier
|
|
|
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
|
@@ -21,28 +23,42 @@ def load_models_and_data():
|
|
| 21 |
savedir=os.path.join("/tmp", spk_model_name),
|
| 22 |
)
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
model, processor, vocoder, speaker_model = load_models_and_data()
|
| 27 |
|
| 28 |
def create_speaker_embedding(waveform):
|
| 29 |
with torch.no_grad():
|
| 30 |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
| 31 |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
| 32 |
-
speaker_embeddings = speaker_embeddings.squeeze()
|
| 33 |
return speaker_embeddings
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@spaces.GPU(duration = 60)
|
| 36 |
-
def text_to_speech(text, audio_file):
|
| 37 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
| 46 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
| 47 |
return "output.wav"
|
| 48 |
|
|
@@ -50,11 +66,11 @@ iface = gr.Interface(
|
|
| 50 |
fn=text_to_speech,
|
| 51 |
inputs=[
|
| 52 |
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
| 53 |
-
gr.Audio(label="Upload a short audio sample of the target speaker", type="filepath")
|
| 54 |
],
|
| 55 |
outputs=gr.Audio(label="Generated Speech"),
|
| 56 |
-
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Voice",
|
| 57 |
-
description="Enter Turkish text, upload a short audio sample of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model."
|
| 58 |
)
|
| 59 |
|
| 60 |
-
iface.launch()
|
|
|
|
| 3 |
import soundfile as sf
|
| 4 |
import spaces
|
| 5 |
import os
|
| 6 |
+
import numpy as np
|
| 7 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 8 |
from speechbrain.pretrained import EncoderClassifier
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
|
|
|
| 23 |
savedir=os.path.join("/tmp", spk_model_name),
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# Load a sample from a dataset for default embedding
|
| 27 |
+
dataset = load_dataset("erenfazlioglu/turkishvoicedataset", split="train")
|
| 28 |
+
example = dataset[304]
|
| 29 |
+
|
| 30 |
+
return model, processor, vocoder, speaker_model, example
|
| 31 |
|
| 32 |
+
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
| 33 |
|
| 34 |
def create_speaker_embedding(waveform):
|
| 35 |
with torch.no_grad():
|
| 36 |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
| 37 |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
| 38 |
+
speaker_embeddings = speaker_embeddings.squeeze()
|
| 39 |
return speaker_embeddings
|
| 40 |
|
| 41 |
+
def prepare_default_embedding(example):
|
| 42 |
+
audio = example["audio"]
|
| 43 |
+
return create_speaker_embedding(audio["array"])
|
| 44 |
+
|
| 45 |
+
default_embedding = prepare_default_embedding(default_example)
|
| 46 |
+
|
| 47 |
@spaces.GPU(duration = 60)
|
| 48 |
+
def text_to_speech(text, audio_file=None):
|
| 49 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
| 50 |
|
| 51 |
+
if audio_file is not None:
|
| 52 |
+
# Load the audio file and create speaker embedding
|
| 53 |
+
waveform, sample_rate = sf.read(audio_file)
|
| 54 |
+
if len(waveform.shape) > 1:
|
| 55 |
+
waveform = waveform[:, 0] # Take the first channel if stereo
|
| 56 |
+
speaker_embeddings = create_speaker_embedding(waveform)
|
| 57 |
+
else:
|
| 58 |
+
# Use default embedding if no audio file is provided
|
| 59 |
+
speaker_embeddings = default_embedding
|
| 60 |
|
| 61 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
|
| 62 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
| 63 |
return "output.wav"
|
| 64 |
|
|
|
|
| 66 |
fn=text_to_speech,
|
| 67 |
inputs=[
|
| 68 |
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
| 69 |
+
gr.Audio(label="Upload a short audio sample of the target speaker (optional)", type="filepath")
|
| 70 |
],
|
| 71 |
outputs=gr.Audio(label="Generated Speech"),
|
| 72 |
+
title="Turkish SpeechT5 Text-to-Speech Demo with Optional Custom Voice",
|
| 73 |
+
description="Enter Turkish text, optionally upload a short audio sample of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model."
|
| 74 |
)
|
| 75 |
|
| 76 |
+
iface.launch(share=True)
|