emirhanbilgic commited on
Commit
42e4080
·
verified ·
1 Parent(s): 2b8ee16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -3
app.py CHANGED
@@ -4,6 +4,7 @@ import soundfile as sf
4
  import spaces
5
  import os
6
  import numpy as np
 
7
  from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
8
  from speechbrain.pretrained import EncoderClassifier
9
  from datasets import load_dataset
@@ -44,22 +45,94 @@ def prepare_default_embedding(example):
44
 
45
  default_embedding = prepare_default_embedding(default_example)
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  @spaces.GPU(duration = 60)
48
  def text_to_speech(text, audio_file=None):
49
- inputs = processor(text=text, return_tensors="pt").to(device)
 
 
 
50
 
51
  speaker_embeddings = default_embedding
52
 
53
  speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
54
  sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
55
- return "output.wav"
56
 
57
  iface = gr.Interface(
58
  fn=text_to_speech,
59
  inputs=[
60
  gr.Textbox(label="Enter Turkish text to convert to speech")
61
  ],
62
- outputs=gr.Audio(label="Generated Speech"),
 
 
 
63
  title="Turkish SpeechT5 Text-to-Speech Demo with Optional Custom Voice",
64
  description="Enter Turkish text, optionally upload a short audio sample of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model."
65
  )
 
4
  import spaces
5
  import os
6
  import numpy as np
7
+ import re
8
  from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
9
  from speechbrain.pretrained import EncoderClassifier
10
  from datasets import load_dataset
 
45
 
46
  default_embedding = prepare_default_embedding(default_example)
47
 
48
+ replacements = [
49
+ ("â", "a"), # Long a
50
+ ("ç", "ch"), # Ch as in "chair"
51
+ ("ğ", "gh"), # Silent g or slight elongation of the preceding vowel
52
+ ("ı", "i"), # Dotless i
53
+ ("î", "i"), # Long i
54
+ ("ö", "oe"), # Similar to German ö
55
+ ("ş", "sh"), # Sh as in "shoe"
56
+ ("ü", "ue"), # Similar to German ü
57
+ ("û", "u"), # Long u
58
+ ]
59
+
60
+ number_words = {
61
+ 0: "sıfır", 1: "bir", 2: "iki", 3: "üç", 4: "dört", 5: "beş", 6: "altı", 7: "yedi", 8: "sekiz", 9: "dokuz",
62
+ 10: "on", 11: "on bir", 12: "on iki", 13: "on üç", 14: "on dört", 15: "on beş", 16: "on altı", 17: "on yedi",
63
+ 18: "on sekiz", 19: "on dokuz", 20: "yirmi", 30: "otuz", 40: "kırk", 50: "elli", 60: "altmış", 70: "yetmiş",
64
+ 80: "seksen", 90: "doksan", 100: "yüz", 1000: "bin"
65
+ }
66
+
67
+ def number_to_words(number):
68
+ if number < 20:
69
+ return number_words[number]
70
+ elif number < 100:
71
+ tens, unit = divmod(number, 10)
72
+ return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
73
+ elif number < 1000:
74
+ hundreds, remainder = divmod(number, 100)
75
+ return (number_words[hundreds] + " yüz" if hundreds > 1 else "yüz") + (" " + number_to_words(remainder) if remainder else "")
76
+ elif number < 1000000:
77
+ thousands, remainder = divmod(number, 1000)
78
+ return (number_to_words(thousands) + " bin" if thousands > 1 else "bin") + (" " + number_to_words(remainder) if remainder else "")
79
+ elif number < 1000000000:
80
+ millions, remainder = divmod(number, 1000000)
81
+ return number_to_words(millions) + " milyon" + (" " + number_to_words(remainder) if remainder else "")
82
+ elif number < 1000000000000:
83
+ billions, remainder = divmod(number, 1000000000)
84
+ return number_to_words(billions) + " milyar" + (" " + number_to_words(remainder) if remainder else "")
85
+ else:
86
+ return str(number)
87
+
88
+ def replace_numbers_with_words(text):
89
+ def replace(match):
90
+ number = int(match.group())
91
+ return number_to_words(number)
92
+
93
+ # Find the numbers and change with words.
94
+ result = re.sub(r'\b\d+\b', replace, text)
95
+
96
+ return result
97
+
98
+ def normalize_text(text):
99
+ # Convert to lowercase
100
+ text = text.lower()
101
+
102
+ # Replace numbers with words
103
+ text = replace_numbers_with_words(text)
104
+
105
+ # Apply character replacements
106
+ for old, new in replacements:
107
+ text = text.replace(old, new)
108
+
109
+ # Remove punctuation
110
+ text = re.sub(r'[^\w\s]', '', text)
111
+
112
+ return text
113
+
114
  @spaces.GPU(duration = 60)
115
  def text_to_speech(text, audio_file=None):
116
+ # Normalize the input text
117
+ normalized_text = normalize_text(text)
118
+
119
+ inputs = processor(text=normalized_text, return_tensors="pt").to(device)
120
 
121
  speaker_embeddings = default_embedding
122
 
123
  speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
124
  sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
125
+ return "output.wav", normalized_text
126
 
127
  iface = gr.Interface(
128
  fn=text_to_speech,
129
  inputs=[
130
  gr.Textbox(label="Enter Turkish text to convert to speech")
131
  ],
132
+ outputs=[
133
+ gr.Audio(label="Generated Speech"),
134
+ gr.Textbox(label="Normalized Text")
135
+ ],
136
  title="Turkish SpeechT5 Text-to-Speech Demo with Optional Custom Voice",
137
  description="Enter Turkish text, optionally upload a short audio sample of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model."
138
  )