|
import gradio as gr |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
import soundfile as sf |
|
import spaces |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def load_models_and_data(): |
|
model_name = "microsoft/speecht5_tts" |
|
processor = SpeechT5Processor.from_pretrained(model_name) |
|
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device) |
|
|
|
return model, processor, vocoder, speaker_embeddings |
|
|
|
model, processor, vocoder, speaker_embeddings = load_models_and_data() |
|
|
|
@spaces.GPU(duration = 60) |
|
def text_to_speech(text): |
|
inputs = processor(text=text, return_tensors="pt").to(device) |
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000) |
|
return "output.wav" |
|
|
|
iface = gr.Interface( |
|
fn=text_to_speech, |
|
inputs=gr.Textbox(label="Enter Turkish text to convert to speech"), |
|
outputs=gr.Audio(label="Generated Speech"), |
|
title="Turkish SpeechT5 Text-to-Speech Demo", |
|
description="Enter Turkish text and listen to the generated speech using the fine-tuned SpeechT5 model." |
|
) |
|
|
|
iface.launch() |