Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Update app.py (#18)
Browse files- Update app.py (520692dd61a5947d0838a926d2856581f3b3c5bc)
Co-authored-by: Yushen CHEN <[email protected]>
    	
        app.py
    CHANGED
    
    | 
         @@ -8,7 +8,7 @@ import tempfile 
     | 
|
| 8 | 
         
             
            from einops import rearrange
         
     | 
| 9 | 
         
             
            from ema_pytorch import EMA
         
     | 
| 10 | 
         
             
            from vocos import Vocos
         
     | 
| 11 | 
         
            -
            from pydub import AudioSegment
         
     | 
| 12 | 
         
             
            from model import CFM, UNetT, DiT, MMDiT
         
     | 
| 13 | 
         
             
            from cached_path import cached_path
         
     | 
| 14 | 
         
             
            from model.utils import (
         
     | 
| 
         @@ -19,6 +19,7 @@ from model.utils import ( 
     | 
|
| 19 | 
         
             
            from transformers import pipeline
         
     | 
| 20 | 
         
             
            import spaces
         
     | 
| 21 | 
         
             
            import librosa
         
     | 
| 
         | 
|
| 22 | 
         
             
            from txtsplit import txtsplit
         
     | 
| 23 | 
         
             
            from detoxify import Detoxify
         
     | 
| 24 | 
         | 
| 
         @@ -49,8 +50,8 @@ speed = 1.0 
     | 
|
| 49 | 
         
             
            # fix_duration = 27  # None or float (duration in seconds)
         
     | 
| 50 | 
         
             
            fix_duration = None
         
     | 
| 51 | 
         | 
| 52 | 
         
            -
            def load_model(exp_name, model_cls, model_cfg, ckpt_step):
         
     | 
| 53 | 
         
            -
                checkpoint = torch.load(str(cached_path(f"hf://SWivid/ 
     | 
| 54 | 
         
             
                vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
         
     | 
| 55 | 
         
             
                model = CFM(
         
     | 
| 56 | 
         
             
                    transformer=model_cls(
         
     | 
| 
         @@ -73,14 +74,14 @@ def load_model(exp_name, model_cls, model_cfg, ckpt_step): 
     | 
|
| 73 | 
         
             
                ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
         
     | 
| 74 | 
         
             
                ema_model.copy_params_from_ema_to_model()
         
     | 
| 75 | 
         | 
| 76 | 
         
            -
                return  
     | 
| 77 | 
         | 
| 78 | 
         
             
            # load models
         
     | 
| 79 | 
         
             
            F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
         
     | 
| 80 | 
         
             
            E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
         
     | 
| 81 | 
         | 
| 82 | 
         
            -
            F5TTS_ema_model 
     | 
| 83 | 
         
            -
            E2TTS_ema_model 
     | 
| 84 | 
         | 
| 85 | 
         
             
            @spaces.GPU
         
     | 
| 86 | 
         
             
            def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
         
     | 
| 
         @@ -91,6 +92,12 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress 
     | 
|
| 91 | 
         
             
                gr.Info("Converting audio...")
         
     | 
| 92 | 
         
             
                with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
         
     | 
| 93 | 
         
             
                    aseg = AudioSegment.from_file(ref_audio_orig)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 94 | 
         
             
                    # Convert to mono
         
     | 
| 95 | 
         
             
                    aseg = aseg.set_channels(1)
         
     | 
| 96 | 
         
             
                    audio_duration = len(aseg)
         
     | 
| 
         @@ -101,10 +108,8 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress 
     | 
|
| 101 | 
         
             
                    ref_audio = f.name
         
     | 
| 102 | 
         
             
                if exp_name == "F5-TTS":
         
     | 
| 103 | 
         
             
                    ema_model = F5TTS_ema_model
         
     | 
| 104 | 
         
            -
                    base_model = F5TTS_base_model
         
     | 
| 105 | 
         
             
                elif exp_name == "E2-TTS":
         
     | 
| 106 | 
         
             
                    ema_model = E2TTS_ema_model
         
     | 
| 107 | 
         
            -
                    base_model = E2TTS_base_model
         
     | 
| 108 | 
         | 
| 109 | 
         
             
                if not ref_text.strip():
         
     | 
| 110 | 
         
             
                    gr.Info("No reference text provided, transcribing reference audio...")
         
     | 
| 
         @@ -119,6 +124,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress 
     | 
|
| 119 | 
         
             
                else:
         
     | 
| 120 | 
         
             
                    gr.Info("Using custom reference text...")
         
     | 
| 121 | 
         
             
                audio, sr = torchaudio.load(ref_audio)
         
     | 
| 
         | 
|
| 122 | 
         
             
                # Audio
         
     | 
| 123 | 
         
             
                if audio.shape[0] > 1:
         
     | 
| 124 | 
         
             
                    audio = torch.mean(audio, dim=0, keepdim=True)
         
     | 
| 
         @@ -130,7 +136,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress 
     | 
|
| 130 | 
         
             
                    audio = resampler(audio)
         
     | 
| 131 | 
         
             
                audio = audio.to(device)
         
     | 
| 132 | 
         
             
                # Chunk
         
     | 
| 133 | 
         
            -
                chunks = txtsplit(gen_text,  
     | 
| 134 | 
         
             
                results = []
         
     | 
| 135 | 
         
             
                generated_mel_specs = []
         
     | 
| 136 | 
         
             
                for chunk in progress.tqdm(chunks):
         
     | 
| 
         @@ -144,14 +150,14 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress 
     | 
|
| 144 | 
         
             
                    #     duration = int(fix_duration * target_sample_rate / hop_length)
         
     | 
| 145 | 
         
             
                    # else:
         
     | 
| 146 | 
         
             
                    zh_pause_punc = r"。,、;:?!"
         
     | 
| 147 | 
         
            -
                    ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
         
     | 
| 148 | 
         
            -
                     
     | 
| 149 | 
         
             
                    duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
         
     | 
| 150 | 
         | 
| 151 | 
         
             
                    # inference
         
     | 
| 152 | 
         
             
                    gr.Info(f"Generating audio using {exp_name}")
         
     | 
| 153 | 
         
             
                    with torch.inference_mode():
         
     | 
| 154 | 
         
            -
                        generated, _ =  
     | 
| 155 | 
         
             
                            cond=audio,
         
     | 
| 156 | 
         
             
                            text=final_text_list,
         
     | 
| 157 | 
         
             
                            duration=duration,
         
     | 
| 
         @@ -174,12 +180,23 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress 
     | 
|
| 174 | 
         
             
                generated_wave = np.concatenate(results)
         
     | 
| 175 | 
         
             
                if remove_silence:
         
     | 
| 176 | 
         
             
                    gr.Info("Removing audio silences... This may take a moment")
         
     | 
| 177 | 
         
            -
                    non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
         
     | 
| 178 | 
         
            -
                    non_silent_wave = np.array([])
         
     | 
| 179 | 
         
            -
                    for interval in non_silent_intervals:
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
                    generated_wave = non_silent_wave
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 183 | 
         | 
| 184 | 
         | 
| 185 | 
         
             
                # spectogram
         
     | 
| 
         | 
|
| 8 | 
         
             
            from einops import rearrange
         
     | 
| 9 | 
         
             
            from ema_pytorch import EMA
         
     | 
| 10 | 
         
             
            from vocos import Vocos
         
     | 
| 11 | 
         
            +
            from pydub import AudioSegment, silence
         
     | 
| 12 | 
         
             
            from model import CFM, UNetT, DiT, MMDiT
         
     | 
| 13 | 
         
             
            from cached_path import cached_path
         
     | 
| 14 | 
         
             
            from model.utils import (
         
     | 
| 
         | 
|
| 19 | 
         
             
            from transformers import pipeline
         
     | 
| 20 | 
         
             
            import spaces
         
     | 
| 21 | 
         
             
            import librosa
         
     | 
| 22 | 
         
            +
            import soundfile as sf
         
     | 
| 23 | 
         
             
            from txtsplit import txtsplit
         
     | 
| 24 | 
         
             
            from detoxify import Detoxify
         
     | 
| 25 | 
         | 
| 
         | 
|
| 50 | 
         
             
            # fix_duration = 27  # None or float (duration in seconds)
         
     | 
| 51 | 
         
             
            fix_duration = None
         
     | 
| 52 | 
         | 
| 53 | 
         
            +
            def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
         
     | 
| 54 | 
         
            +
                checkpoint = torch.load(str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
         
     | 
| 55 | 
         
             
                vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
         
     | 
| 56 | 
         
             
                model = CFM(
         
     | 
| 57 | 
         
             
                    transformer=model_cls(
         
     | 
| 
         | 
|
| 74 | 
         
             
                ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
         
     | 
| 75 | 
         
             
                ema_model.copy_params_from_ema_to_model()
         
     | 
| 76 | 
         | 
| 77 | 
         
            +
                return model
         
     | 
| 78 | 
         | 
| 79 | 
         
             
            # load models
         
     | 
| 80 | 
         
             
            F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
         
     | 
| 81 | 
         
             
            E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
         
     | 
| 82 | 
         | 
| 83 | 
         
            +
            F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
         
     | 
| 84 | 
         
            +
            E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
         
     | 
| 85 | 
         | 
| 86 | 
         
             
            @spaces.GPU
         
     | 
| 87 | 
         
             
            def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
         
     | 
| 
         | 
|
| 92 | 
         
             
                gr.Info("Converting audio...")
         
     | 
| 93 | 
         
             
                with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
         
     | 
| 94 | 
         
             
                    aseg = AudioSegment.from_file(ref_audio_orig)
         
     | 
| 95 | 
         
            +
                    # remove long silence in reference audio
         
     | 
| 96 | 
         
            +
                    non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
         
     | 
| 97 | 
         
            +
                    non_silent_wave = AudioSegment.silent(duration=0)
         
     | 
| 98 | 
         
            +
                    for non_silent_seg in non_silent_segs:
         
     | 
| 99 | 
         
            +
                        non_silent_wave += non_silent_seg
         
     | 
| 100 | 
         
            +
                    aseg = non_silent_wave
         
     | 
| 101 | 
         
             
                    # Convert to mono
         
     | 
| 102 | 
         
             
                    aseg = aseg.set_channels(1)
         
     | 
| 103 | 
         
             
                    audio_duration = len(aseg)
         
     | 
| 
         | 
|
| 108 | 
         
             
                    ref_audio = f.name
         
     | 
| 109 | 
         
             
                if exp_name == "F5-TTS":
         
     | 
| 110 | 
         
             
                    ema_model = F5TTS_ema_model
         
     | 
| 
         | 
|
| 111 | 
         
             
                elif exp_name == "E2-TTS":
         
     | 
| 112 | 
         
             
                    ema_model = E2TTS_ema_model
         
     | 
| 
         | 
|
| 113 | 
         | 
| 114 | 
         
             
                if not ref_text.strip():
         
     | 
| 115 | 
         
             
                    gr.Info("No reference text provided, transcribing reference audio...")
         
     | 
| 
         | 
|
| 124 | 
         
             
                else:
         
     | 
| 125 | 
         
             
                    gr.Info("Using custom reference text...")
         
     | 
| 126 | 
         
             
                audio, sr = torchaudio.load(ref_audio)
         
     | 
| 127 | 
         
            +
                max_chars = int(len(ref_text) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
         
     | 
| 128 | 
         
             
                # Audio
         
     | 
| 129 | 
         
             
                if audio.shape[0] > 1:
         
     | 
| 130 | 
         
             
                    audio = torch.mean(audio, dim=0, keepdim=True)
         
     | 
| 
         | 
|
| 136 | 
         
             
                    audio = resampler(audio)
         
     | 
| 137 | 
         
             
                audio = audio.to(device)
         
     | 
| 138 | 
         
             
                # Chunk
         
     | 
| 139 | 
         
            +
                chunks = txtsplit(gen_text, 0.7*max_chars, 0.9*max_chars)
         
     | 
| 140 | 
         
             
                results = []
         
     | 
| 141 | 
         
             
                generated_mel_specs = []
         
     | 
| 142 | 
         
             
                for chunk in progress.tqdm(chunks):
         
     | 
| 
         | 
|
| 150 | 
         
             
                    #     duration = int(fix_duration * target_sample_rate / hop_length)
         
     | 
| 151 | 
         
             
                    # else:
         
     | 
| 152 | 
         
             
                    zh_pause_punc = r"。,、;:?!"
         
     | 
| 153 | 
         
            +
                    ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
         
     | 
| 154 | 
         
            +
                    chunk = len(chunk.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
         
     | 
| 155 | 
         
             
                    duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
         
     | 
| 156 | 
         | 
| 157 | 
         
             
                    # inference
         
     | 
| 158 | 
         
             
                    gr.Info(f"Generating audio using {exp_name}")
         
     | 
| 159 | 
         
             
                    with torch.inference_mode():
         
     | 
| 160 | 
         
            +
                        generated, _ = ema_model.sample(
         
     | 
| 161 | 
         
             
                            cond=audio,
         
     | 
| 162 | 
         
             
                            text=final_text_list,
         
     | 
| 163 | 
         
             
                            duration=duration,
         
     | 
| 
         | 
|
| 180 | 
         
             
                generated_wave = np.concatenate(results)
         
     | 
| 181 | 
         
             
                if remove_silence:
         
     | 
| 182 | 
         
             
                    gr.Info("Removing audio silences... This may take a moment")
         
     | 
| 183 | 
         
            +
                    # non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
         
     | 
| 184 | 
         
            +
                    # non_silent_wave = np.array([])
         
     | 
| 185 | 
         
            +
                    # for interval in non_silent_intervals:
         
     | 
| 186 | 
         
            +
                    #     start, end = interval
         
     | 
| 187 | 
         
            +
                    #     non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
         
     | 
| 188 | 
         
            +
                    # generated_wave = non_silent_wave
         
     | 
| 189 | 
         
            +
                    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
         
     | 
| 190 | 
         
            +
                        sf.write(f.name, generated_wave, target_sample_rate)
         
     | 
| 191 | 
         
            +
                        aseg = AudioSegment.from_file(f.name)
         
     | 
| 192 | 
         
            +
                        non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
         
     | 
| 193 | 
         
            +
                        non_silent_wave = AudioSegment.silent(duration=0)
         
     | 
| 194 | 
         
            +
                        for non_silent_seg in non_silent_segs:
         
     | 
| 195 | 
         
            +
                            non_silent_wave += non_silent_seg
         
     | 
| 196 | 
         
            +
                        aseg = non_silent_wave
         
     | 
| 197 | 
         
            +
                        aseg.export(f.name, format="wav")
         
     | 
| 198 | 
         
            +
                        generated_wave, _ = torchaudio.load(f.name)
         
     | 
| 199 | 
         
            +
                    generated_wave = generated_wave.squeeze().cpu().numpy()
         
     | 
| 200 | 
         | 
| 201 | 
         | 
| 202 | 
         
             
                # spectogram
         
     |