File size: 5,652 Bytes
7978a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

import datetime
import json
import os
import time

import gradio as gr
import torch
import yaml
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf

from model.leo_agent import LeoAgentLLM

LOG_DIR = 'logs'
MESH_DIR = 'assets/scene_meshes'
MESH_NAMES = [os.path.splitext(fname)[0] for fname in os.listdir(MESH_DIR)]
ENABLE_BUTTON = gr.update(interactive=True)
DISABLE_BUTTON = gr.update(interactive=False)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

ROLE_PROMPT = "You are an AI visual assistant situated in a 3D scene. "\
              "You can perceive (1) an ego-view image (accessible when necessary) and (2) the objects (including yourself) in the scene (always accessible). "\
              "You should properly respond to the USER's instruction according to the given visual information. "
EGOVIEW_PROMPT = "Ego-view image:"
OBJECTS_PROMPT = "Objects (including you) in the scene:"
TASK_PROMPT = "USER: {instruction} ASSISTANT:"
OBJ_FEATS_DIR = 'assets/obj_features'


def load_agent():
    # build model
    with open('model/cfg.yaml') as f:
        cfg = yaml.safe_load(f)
        cfg = OmegaConf.create(cfg)
    agent = LeoAgentLLM(cfg)

    # load checkpoint
    if cfg.use_ckpt == 'hf':
        ckpt_path = hf_hub_download(cfg.hf_ckpt_path[0], cfg.hf_ckpt_path[1])
    else:
        ckpt_path = cfg.local_ckpt_path
    ckpt = torch.load(ckpt_path, map_location='cpu')
    agent.load_state_dict(ckpt, strict=False)

    agent.eval()
    agent.to(DEVICE)
    return agent

agent = load_agent()


def get_log_fname():
    t = datetime.datetime.now()
    fname = os.path.join(LOG_DIR, f'{t.year}-{t.month:02d}-{t.day:02d}.json')
    return fname


def change_scene(dropdown_scene: str):
    # reset 3D scene and chatbot history
    return os.path.join(MESH_DIR, f'{dropdown_scene}.glb'), None


def receive_instruction(chatbot: gr.Chatbot, user_chat_input: gr.Textbox):
    # display user input, after submitting user message, before inference
    chatbot.append((user_chat_input, None))
    return (chatbot, gr.update(value=""),) + (DISABLE_BUTTON,) * 5


def generate_response(
        chatbot: gr.Chatbot,
        dropdown_scene: gr.Dropdown,
        dropdown_conversation_mode: gr.Dropdown,
        repetition_penalty: float, length_penalty: float
    ):
    # response starts
    chatbot[-1] = (chatbot[-1][0], "▌")
    yield (chatbot,) + (DISABLE_BUTTON,) * 5

    # create data_dict, batch_size = 1
    data_dict = {
        'prompt_before_obj': [ROLE_PROMPT],
        'prompt_middle_1': [EGOVIEW_PROMPT],
        'prompt_middle_2': [OBJECTS_PROMPT],
        'img_tokens': torch.zeros(1, 1, 4096).float(),
        'img_masks': torch.zeros(1, 1).bool(),
        'anchor_locs': torch.zeros(1, 3).float(),
    }

    # initialize prompt
    prompt = ""
    if 'Multi-round' in dropdown_conversation_mode:
        # multi-round dialogue, with memory
        for (q, a) in chatbot[:-1]:
            prompt += f"USER: {q.strip()} ASSISTANT: {a.strip()}</s>"

    prompt += f"USER: {chatbot[-1][0]} ASSISTANT:"
    data_dict['prompt_after_obj'] = [prompt]

    # anchor orientation
    anchor_orient = torch.zeros(1, 4).float()
    anchor_orient[:, -1] = 1
    data_dict['anchor_orientation'] = anchor_orient

    # load preprocessed scene features
    data_dict.update(torch.load(os.path.join(OBJ_FEATS_DIR, f'{dropdown_scene}.pth'), map_location='cpu'))

    # inference
    for k, v in data_dict.items():
        if isinstance(v, torch.Tensor):
            data_dict[k] = v.to(DEVICE)

    output = agent.generate(
        data_dict,
        repetition_penalty=float(repetition_penalty),
        length_penalty=float(length_penalty),
    )
    output = output[0]

    # display response
    for out_len in range(1, len(output)-1):
        chatbot[-1] = (chatbot[-1][0], output[:out_len] + '▌')
        yield (chatbot,) + (DISABLE_BUTTON,) * 5
        time.sleep(0.01)
    
    chatbot[-1] = (chatbot[-1][0], output)
    vote_response(chatbot, 'log', dropdown_scene, dropdown_conversation_mode)
    yield (chatbot,) + (ENABLE_BUTTON,) * 5


def vote_response(
        chatbot: gr.Chatbot, vote_type: str,
        dropdown_scene: gr.Dropdown,
        dropdown_conversation_mode: gr.Dropdown
    ):
    t = datetime.datetime.now()
    this_log = {
        'time': f'{t.hour:02d}:{t.minute:02d}:{t.second:02d}',
        'type': vote_type,
        'scene': dropdown_scene,
        'mode': dropdown_conversation_mode,
        'dialogue': chatbot,
    }
    fname = get_log_fname()
    if os.path.exists(fname):
        with open(fname) as f:
            logs = json.load(f)
        logs.append(this_log)
    else:
        logs = [this_log]
    with open(fname, 'w') as f:
        json.dump(logs, f, indent=2)


def upvote_response(
        chatbot: gr.Chatbot,
        dropdown_scene: gr.Dropdown,
        dropdown_conversation_mode: gr.Dropdown
    ):
    vote_response(chatbot, 'upvote', dropdown_scene, dropdown_conversation_mode)
    return ("",) + (DISABLE_BUTTON,) * 3


def downvote_response(
        chatbot: gr.Chatbot,
        dropdown_scene: gr.Dropdown,
        dropdown_conversation_mode: gr.Dropdown
    ):
    vote_response(chatbot, 'downvote', dropdown_scene, dropdown_conversation_mode)
    return ("",) + (DISABLE_BUTTON,) * 3


def flag_response(
        chatbot: gr.Chatbot,
        dropdown_scene: gr.Dropdown,
        dropdown_conversation_mode: gr.Dropdown
    ):
    vote_response(chatbot, 'flag', dropdown_scene, dropdown_conversation_mode)
    return ("",) + (DISABLE_BUTTON,) * 3


def clear_history():
    # reset chatbot history
    return (None, "",) + (DISABLE_BUTTON,) * 4