import gradio as gr import numpy as np # import random # import spaces #[uncomment to use ZeroGPU] from diffusers import ( # StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, ) import torch import requests from fastapi import FastAPI, HTTPException from PIL import Image from controlnet_aux import CannyDetector device = "cuda" if torch.cuda.is_available() else "cpu" # model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use model_repo_id = "runwayml/stable-diffusion-v1-5" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 # controlnet = ControlNetModel.from_pretrained( # "lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32 # ) controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) # pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( # model_repo_id, # controlnet=controlnet, # torch_dtype=torch_dtype, # ).to(device) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ).to(device) # pipe = pipe.to(device) canny = CannyDetector() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( image_url, # negative_prompt, # seed, # randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): # if randomize_seed: # seed = random.randint(0, MAX_SEED) # generator = torch.Generator().manual_seed(seed) # image = pipe( # prompt=prompt, # negative_prompt=negative_prompt, # guidance_scale=guidance_scale, # num_inference_steps=num_inference_steps, # width=width, # height=height, # generator=generator, # ).images[0] # return image, seed width = int(width) height = int(height) try: resp = requests.get(image_url) resp.raise_for_status() except Exception as e: raise HTTPException(400, f"Could not download image: {e}") # img = Image.open(io.BytesIO(resp.content)).convert("RGB") img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB") # img = img.resize((req.width, req.height)) img = img.resize((width, height)) control_net_image = canny(img).resize((width, height)) prompt = ( "redraw the logo from scratch, clean sharp vector-style, " # + STYLE_PROMPTS[req.style_preset] ) output = pipe( prompt=prompt, negative_prompt=NEGATIVE, image=img, control_image=control_net_image, # strength=req.strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, height=height, width=width, ).images[0] return output examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ NEGATIVE = "blurry, distorted, messy, gradients, background noise" WIDTH = 512 HEIGHT = 512 with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): image_url = gr.Text( label="Image URL", show_label=False, # max_lines=1, placeholder="Provide a image URL", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Label( label="Negative prompts", # max_lines=1, value=NEGATIVE, visible=True, ) # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=0, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Label( label="Width", value=WIDTH, # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=1024, # Replace with defaults that work for your model ) height = gr.Label( label="Height", value=HEIGHT, # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=8.5, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, # Replace with defaults that work for your model ) # gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, image_url.submit], fn=infer, inputs=[ image_url, # negative_prompt, # seed, # randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[ result, # seed, ], ) if __name__ == "__main__": demo.launch()