Spaces:
Running
on
Zero
Running
on
Zero
Andre Embury
commited on
Update main app
Browse filesInitial commit to convert from prompt to image input.
- app.py +117 -53
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,21 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
|
|
4 |
|
5 |
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import
|
|
|
|
|
|
|
7 |
import torch
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
|
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
pipe = pipe.to(device)
|
|
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
@@ -23,32 +43,67 @@ MAX_IMAGE_SIZE = 1024
|
|
23 |
|
24 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
-
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
width,
|
31 |
height,
|
32 |
guidance_scale,
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
if randomize_seed:
|
37 |
-
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
prompt=prompt,
|
43 |
-
negative_prompt=
|
|
|
|
|
|
|
44 |
guidance_scale=guidance_scale,
|
45 |
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
height=height,
|
48 |
-
|
49 |
).images[0]
|
50 |
|
51 |
-
return
|
52 |
|
53 |
|
54 |
examples = [
|
@@ -64,16 +119,20 @@ css = """
|
|
64 |
}
|
65 |
"""
|
66 |
|
|
|
|
|
|
|
|
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
label="
|
74 |
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="
|
77 |
container=False,
|
78 |
)
|
79 |
|
@@ -82,38 +141,40 @@ with gr.Blocks(css=css) as demo:
|
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.
|
86 |
-
label="Negative
|
87 |
-
max_lines=1,
|
88 |
-
|
89 |
-
visible=
|
90 |
)
|
91 |
|
92 |
-
seed = gr.Slider(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
|
102 |
with gr.Row():
|
103 |
-
width = gr.
|
104 |
label="Width",
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
)
|
110 |
|
111 |
-
height = gr.
|
112 |
label="Height",
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
@@ -122,7 +183,7 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
@@ -130,24 +191,27 @@ with gr.Blocks(css=css) as demo:
|
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
gr.on(
|
138 |
-
triggers=[run_button.click,
|
139 |
fn=infer,
|
140 |
inputs=[
|
141 |
-
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
width,
|
146 |
height,
|
147 |
guidance_scale,
|
148 |
num_inference_steps,
|
149 |
],
|
150 |
-
outputs=[
|
|
|
|
|
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
|
4 |
+
# import random
|
5 |
|
6 |
# import spaces #[uncomment to use ZeroGPU]
|
7 |
+
from diffusers import (
|
8 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
9 |
+
ControlNetModel,
|
10 |
+
)
|
11 |
import torch
|
12 |
|
13 |
+
import requests
|
14 |
+
from fastapi import FastAPI, HTTPException
|
15 |
+
from PIL import Image
|
16 |
+
from controlnet_aux import CannyDetector
|
17 |
+
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
20 |
+
model_repo_id = "runwayml/stable-diffusion-v1-5"
|
21 |
|
22 |
if torch.cuda.is_available():
|
23 |
torch_dtype = torch.float16
|
24 |
else:
|
25 |
torch_dtype = torch.float32
|
26 |
|
27 |
+
controlnet = ControlNetModel.from_pretrained(
|
28 |
+
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32
|
29 |
+
)
|
30 |
+
|
31 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
32 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
33 |
+
model_repo_id,
|
34 |
+
controlnet=controlnet,
|
35 |
+
torch_dtype=torch_dtype,
|
36 |
+
).to(device)
|
37 |
pipe = pipe.to(device)
|
38 |
+
canny = CannyDetector()
|
39 |
|
40 |
MAX_SEED = np.iinfo(np.int32).max
|
41 |
MAX_IMAGE_SIZE = 1024
|
|
|
43 |
|
44 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
45 |
def infer(
|
46 |
+
image_url,
|
47 |
+
# negative_prompt,
|
48 |
+
# seed,
|
49 |
+
# randomize_seed,
|
50 |
width,
|
51 |
height,
|
52 |
guidance_scale,
|
53 |
num_inference_steps,
|
54 |
progress=gr.Progress(track_tqdm=True),
|
55 |
):
|
56 |
+
# if randomize_seed:
|
57 |
+
# seed = random.randint(0, MAX_SEED)
|
58 |
+
|
59 |
+
# generator = torch.Generator().manual_seed(seed)
|
60 |
+
|
61 |
+
# image = pipe(
|
62 |
+
# prompt=prompt,
|
63 |
+
# negative_prompt=negative_prompt,
|
64 |
+
# guidance_scale=guidance_scale,
|
65 |
+
# num_inference_steps=num_inference_steps,
|
66 |
+
# width=width,
|
67 |
+
# height=height,
|
68 |
+
# generator=generator,
|
69 |
+
# ).images[0]
|
70 |
+
|
71 |
+
# return image, seed
|
72 |
+
|
73 |
+
width = int(width)
|
74 |
+
height = int(height)
|
75 |
+
|
76 |
+
try:
|
77 |
+
resp = requests.get(image_url)
|
78 |
+
resp.raise_for_status()
|
79 |
+
except Exception as e:
|
80 |
+
raise HTTPException(400, f"Could not download image: {e}")
|
81 |
+
|
82 |
+
# img = Image.open(io.BytesIO(resp.content)).convert("RGB")
|
83 |
+
img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
84 |
+
# img = img.resize((req.width, req.height))
|
85 |
+
img = img.resize((width, height))
|
86 |
+
|
87 |
+
control_net_image = canny(img).resize((width, height))
|
88 |
+
|
89 |
+
prompt = (
|
90 |
+
"redraw the logo from scratch, clean sharp vector-style, "
|
91 |
+
# + STYLE_PROMPTS[req.style_preset]
|
92 |
+
)
|
93 |
|
94 |
+
output = pipe(
|
95 |
prompt=prompt,
|
96 |
+
negative_prompt=NEGATIVE,
|
97 |
+
image=img,
|
98 |
+
control_image=control_net_image,
|
99 |
+
# strength=req.strength,
|
100 |
guidance_scale=guidance_scale,
|
101 |
num_inference_steps=num_inference_steps,
|
|
|
102 |
height=height,
|
103 |
+
width=width,
|
104 |
).images[0]
|
105 |
|
106 |
+
return output
|
107 |
|
108 |
|
109 |
examples = [
|
|
|
119 |
}
|
120 |
"""
|
121 |
|
122 |
+
NEGATIVE = "blurry, distorted, messy, gradients, background noise"
|
123 |
+
WIDTH = 512
|
124 |
+
HEIGHT = 512
|
125 |
+
|
126 |
with gr.Blocks(css=css) as demo:
|
127 |
with gr.Column(elem_id="col-container"):
|
128 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
129 |
|
130 |
with gr.Row():
|
131 |
+
image_url = gr.Text(
|
132 |
+
label="Image URL",
|
133 |
show_label=False,
|
134 |
+
# max_lines=1,
|
135 |
+
placeholder="Provide a image URL",
|
136 |
container=False,
|
137 |
)
|
138 |
|
|
|
141 |
result = gr.Image(label="Result", show_label=False)
|
142 |
|
143 |
with gr.Accordion("Advanced Settings", open=False):
|
144 |
+
negative_prompt = gr.Label(
|
145 |
+
label="Negative prompts",
|
146 |
+
# max_lines=1,
|
147 |
+
value=NEGATIVE,
|
148 |
+
visible=True,
|
149 |
)
|
150 |
|
151 |
+
# seed = gr.Slider(
|
152 |
+
# label="Seed",
|
153 |
+
# minimum=0,
|
154 |
+
# maximum=MAX_SEED,
|
155 |
+
# step=1,
|
156 |
+
# value=0,
|
157 |
+
# )
|
158 |
|
159 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
160 |
|
161 |
with gr.Row():
|
162 |
+
width = gr.Label(
|
163 |
label="Width",
|
164 |
+
value=WIDTH,
|
165 |
+
# minimum=256,
|
166 |
+
# maximum=MAX_IMAGE_SIZE,
|
167 |
+
# step=32,
|
168 |
+
# value=1024, # Replace with defaults that work for your model
|
169 |
)
|
170 |
|
171 |
+
height = gr.Label(
|
172 |
label="Height",
|
173 |
+
value=HEIGHT,
|
174 |
+
# minimum=256,
|
175 |
+
# maximum=MAX_IMAGE_SIZE,
|
176 |
+
# step=32,
|
177 |
+
# value=1024, # Replace with defaults that work for your model
|
178 |
)
|
179 |
|
180 |
with gr.Row():
|
|
|
183 |
minimum=0.0,
|
184 |
maximum=10.0,
|
185 |
step=0.1,
|
186 |
+
value=8.5, # Replace with defaults that work for your model
|
187 |
)
|
188 |
|
189 |
num_inference_steps = gr.Slider(
|
|
|
191 |
minimum=1,
|
192 |
maximum=50,
|
193 |
step=1,
|
194 |
+
value=25, # Replace with defaults that work for your model
|
195 |
)
|
196 |
|
197 |
+
# gr.Examples(examples=examples, inputs=[prompt])
|
198 |
gr.on(
|
199 |
+
triggers=[run_button.click, image_url.submit],
|
200 |
fn=infer,
|
201 |
inputs=[
|
202 |
+
image_url,
|
203 |
+
# negative_prompt,
|
204 |
+
# seed,
|
205 |
+
# randomize_seed,
|
206 |
width,
|
207 |
height,
|
208 |
guidance_scale,
|
209 |
num_inference_steps,
|
210 |
],
|
211 |
+
outputs=[
|
212 |
+
result,
|
213 |
+
# seed,
|
214 |
+
],
|
215 |
)
|
216 |
|
217 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -3,4 +3,11 @@ diffusers
|
|
3 |
invisible_watermark
|
4 |
torch
|
5 |
transformers
|
6 |
-
xformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
invisible_watermark
|
4 |
torch
|
5 |
transformers
|
6 |
+
# xformers
|
7 |
+
fastapi
|
8 |
+
uvicorn
|
9 |
+
pydantic
|
10 |
+
requests
|
11 |
+
Pillow
|
12 |
+
controlnet-aux
|
13 |
+
gradio
|