Spaces:
Sleeping
Sleeping
Andre Embury
commited on
First test with ControlNet Union
Browse filesTake inspiration:
https://github.com/xinsir6/ControlNetPlus/blob/main/controlnet_union_test_canny.py
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import numpy as np
|
|
| 7 |
from diffusers import (
|
| 8 |
# StableDiffusionControlNetImg2ImgPipeline,
|
| 9 |
ControlNetModel,
|
|
|
|
| 10 |
StableDiffusionXLControlNetPipeline,
|
| 11 |
)
|
| 12 |
import torch
|
|
@@ -14,9 +15,14 @@ import torch
|
|
| 14 |
import requests
|
| 15 |
from fastapi import FastAPI, HTTPException
|
| 16 |
from PIL import Image
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
|
@@ -48,23 +54,36 @@ else:
|
|
| 48 |
# variant="fp16",
|
| 49 |
# use_safetensors=True,
|
| 50 |
# ).to(device)
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
"
|
| 55 |
)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 60 |
-
controlnet=
|
|
|
|
| 61 |
torch_dtype=torch.float16,
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
)
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
# canny = CannyDetector()
|
| 67 |
-
scribble_detector = ScribbleDetector()
|
| 68 |
|
| 69 |
MAX_SEED = np.iinfo(np.int32).max
|
| 70 |
MAX_IMAGE_SIZE = 1024
|
|
@@ -111,10 +130,17 @@ def infer(
|
|
| 111 |
# img = Image.open(io.BytesIO(resp.content)).convert("RGB")
|
| 112 |
img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
| 113 |
# img = img.resize((req.width, req.height))
|
| 114 |
-
img = img.resize((width, height))
|
| 115 |
|
| 116 |
# control_net_image = canny(img).resize((width, height))
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
prompt = (
|
| 120 |
"redraw the logo from scratch, clean sharp vector-style, "
|
|
@@ -124,8 +150,8 @@ def infer(
|
|
| 124 |
output = pipe(
|
| 125 |
prompt=prompt,
|
| 126 |
negative_prompt=NEGATIVE,
|
| 127 |
-
image=img,
|
| 128 |
-
control_image=
|
| 129 |
# strength=req.strength,
|
| 130 |
guidance_scale=guidance_scale,
|
| 131 |
num_inference_steps=num_inference_steps,
|
|
@@ -153,6 +179,26 @@ NEGATIVE = "blurry, distorted, messy, gradients, background noise"
|
|
| 153 |
WIDTH = 512
|
| 154 |
HEIGHT = 512
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
with gr.Blocks(css=css) as demo:
|
| 157 |
with gr.Column(elem_id="col-container"):
|
| 158 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
|
|
|
| 7 |
from diffusers import (
|
| 8 |
# StableDiffusionControlNetImg2ImgPipeline,
|
| 9 |
ControlNetModel,
|
| 10 |
+
ControlNetUnionModel,
|
| 11 |
StableDiffusionXLControlNetPipeline,
|
| 12 |
)
|
| 13 |
import torch
|
|
|
|
| 15 |
import requests
|
| 16 |
from fastapi import FastAPI, HTTPException
|
| 17 |
from PIL import Image
|
| 18 |
+
from controlnet_aux import CannyDetector
|
| 19 |
|
| 20 |
+
from diffusers import AutoencoderKL
|
| 21 |
+
from diffusers import (
|
| 22 |
+
EulerAncestralDiscreteScheduler,
|
| 23 |
+
StableDiffusionXLControlNetUnionPipeline,
|
| 24 |
+
)
|
| 25 |
+
import cv2
|
| 26 |
|
| 27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
|
|
|
| 54 |
# variant="fp16",
|
| 55 |
# use_safetensors=True,
|
| 56 |
# ).to(device)
|
| 57 |
+
# # pipe = pipe.to(device)
|
| 58 |
+
# canny = CannyDetector()
|
| 59 |
|
| 60 |
+
|
| 61 |
+
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
|
| 62 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler"
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# when test with other base model, you need to change the vae also.
|
| 66 |
+
vae = AutoencoderKL.from_pretrained(
|
| 67 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
controlnet_model = ControlNetUnionModel.from_pretrained(
|
| 71 |
+
"xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# controlnet_union_model = ControlNetUnionModel([controlnet_model])
|
| 75 |
+
|
| 76 |
+
pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained(
|
| 77 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 78 |
+
controlnet=controlnet_model,
|
| 79 |
+
vae=vae,
|
| 80 |
torch_dtype=torch.float16,
|
| 81 |
+
scheduler=eulera_scheduler,
|
| 82 |
+
control_mode=[0],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
pipe = pipe.to(device)
|
| 86 |
|
|
|
|
|
|
|
| 87 |
|
| 88 |
MAX_SEED = np.iinfo(np.int32).max
|
| 89 |
MAX_IMAGE_SIZE = 1024
|
|
|
|
| 130 |
# img = Image.open(io.BytesIO(resp.content)).convert("RGB")
|
| 131 |
img = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
| 132 |
# img = img.resize((req.width, req.height))
|
| 133 |
+
# img = img.resize((width, height))
|
| 134 |
|
| 135 |
# control_net_image = canny(img).resize((width, height))
|
| 136 |
+
|
| 137 |
+
img_np = np.array(img)
|
| 138 |
+
|
| 139 |
+
controlnet_img = cv2.resize(img_np, (width, height))
|
| 140 |
+
|
| 141 |
+
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
| 142 |
+
controlnet_img = HWC3(controlnet_img)
|
| 143 |
+
controlnet_img = Image.fromarray(controlnet_img)
|
| 144 |
|
| 145 |
prompt = (
|
| 146 |
"redraw the logo from scratch, clean sharp vector-style, "
|
|
|
|
| 150 |
output = pipe(
|
| 151 |
prompt=prompt,
|
| 152 |
negative_prompt=NEGATIVE,
|
| 153 |
+
# image=img,
|
| 154 |
+
control_image=controlnet_img,
|
| 155 |
# strength=req.strength,
|
| 156 |
guidance_scale=guidance_scale,
|
| 157 |
num_inference_steps=num_inference_steps,
|
|
|
|
| 179 |
WIDTH = 512
|
| 180 |
HEIGHT = 512
|
| 181 |
|
| 182 |
+
|
| 183 |
+
def HWC3(x):
|
| 184 |
+
assert x.dtype == np.uint8
|
| 185 |
+
if x.ndim == 2:
|
| 186 |
+
x = x[:, :, None]
|
| 187 |
+
assert x.ndim == 3
|
| 188 |
+
H, W, C = x.shape
|
| 189 |
+
assert C == 1 or C == 3 or C == 4
|
| 190 |
+
if C == 3:
|
| 191 |
+
return x
|
| 192 |
+
if C == 1:
|
| 193 |
+
return np.concatenate([x, x, x], axis=2)
|
| 194 |
+
if C == 4:
|
| 195 |
+
color = x[:, :, 0:3].astype(np.float32)
|
| 196 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
| 197 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
| 198 |
+
y = y.clip(0, 255).astype(np.uint8)
|
| 199 |
+
return y
|
| 200 |
+
|
| 201 |
+
|
| 202 |
with gr.Blocks(css=css) as demo:
|
| 203 |
with gr.Column(elem_id="col-container"):
|
| 204 |
gr.Markdown(" # Text-to-Image Gradio Template")
|