Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
import gradio as gr
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load your pre-trained model
|
9 |
+
model = load_model('cnn_lstm1.h5')
|
10 |
+
|
11 |
+
# Function to preprocess each frame
|
12 |
+
def preprocess_frame(frame):
|
13 |
+
resized_frame = cv2.resize(frame, (224, 224)) # Adjust size based on your model's input shape
|
14 |
+
normalized_frame = resized_frame / 255.0
|
15 |
+
return np.expand_dims(normalized_frame, axis=0) # Add batch dimension
|
16 |
+
|
17 |
+
# Function to process the video and make predictions
|
18 |
+
def predict_drowsiness(video_path):
|
19 |
+
# Open the video file
|
20 |
+
cap = cv2.VideoCapture(video_path)
|
21 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
22 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
23 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
24 |
+
|
25 |
+
# Create a temporary file for the output video
|
26 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_output:
|
27 |
+
temp_output_path = temp_output.name
|
28 |
+
|
29 |
+
# Output video settings
|
30 |
+
out = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
|
31 |
+
|
32 |
+
while cap.isOpened():
|
33 |
+
ret, frame = cap.read()
|
34 |
+
if not ret:
|
35 |
+
break
|
36 |
+
|
37 |
+
# Preprocess frame
|
38 |
+
preprocessed_frame = preprocess_frame(frame)
|
39 |
+
|
40 |
+
# Use the model to predict drowsiness
|
41 |
+
prediction = model.predict(preprocessed_frame)
|
42 |
+
drowsiness = np.argmax(prediction)
|
43 |
+
|
44 |
+
# Add label to frame
|
45 |
+
label = 'Drowsy' if drowsiness == 0 else 'Alert'
|
46 |
+
cv2.putText(frame, label, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
47 |
+
|
48 |
+
# Write the frame with label to the output video
|
49 |
+
out.write(frame)
|
50 |
+
|
51 |
+
# Release resources
|
52 |
+
cap.release()
|
53 |
+
out.release()
|
54 |
+
|
55 |
+
return temp_output_path # Return the path to the temporary output video
|
56 |
+
|
57 |
+
# Gradio interface
|
58 |
+
interface = gr.Interface(
|
59 |
+
fn=predict_drowsiness,
|
60 |
+
inputs=gr.Video(), # Video input from webcam or upload
|
61 |
+
outputs="video", # Return a playable video with predictions
|
62 |
+
title="Drowsiness Detection in Video",
|
63 |
+
description="Upload a video or record one, and this tool will detect if the person is drowsy.",
|
64 |
+
)
|
65 |
+
|
66 |
+
# Launch the app
|
67 |
+
if __name__ == "__main__":
|
68 |
+
interface.launch()
|