Spaces:
Sleeping
Sleeping
import cv2 | |
import spaces | |
import numpy as np | |
import gradio as gr | |
import tempfile | |
import os | |
os.environ['CUDA_VISIBLE_DEVICES'] = "0" | |
# Function to preprocess each frame | |
def preprocess_frame(frame): | |
resized_frame = cv2.resize(frame, (224, 224)) # Adjust size based on your model's input shape | |
normalized_frame = resized_frame / 255.0 | |
return np.expand_dims(normalized_frame, axis=0) # Add batch dimension | |
# Function to draw pretty label on the frame | |
def draw_label(frame, label, position=(50, 50), font_scale=1, thickness=2): | |
# Define label properties | |
if label == 'Drowsy': | |
color = (0, 0, 255) # Red for Drowsy | |
bg_color = (0, 0, 100) # Darker background for Drowsy | |
else: | |
color = (0, 255, 0) # Green for Alert | |
bg_color = (0, 100, 0) # Darker background for Alert | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
text_size = cv2.getTextSize(label, font, font_scale, thickness)[0] | |
# Define rectangle background dimensions | |
text_x, text_y = position | |
rect_start = (text_x, text_y - text_size[1] - 10) # Adjust y to account for text height | |
rect_end = (text_x + text_size[0] + 10, text_y + 10) | |
# Draw rectangle background | |
cv2.rectangle(frame, rect_start, rect_end, bg_color, -1) | |
# Add border around text | |
cv2.putText(frame, label, position, font, font_scale, (255, 255, 255), thickness + 2, lineType=cv2.LINE_AA) | |
# Add the main colored text | |
cv2.putText(frame, label, position, font, font_scale, color, thickness, lineType=cv2.LINE_AA) | |
def predict_drowsiness(video_path): | |
# Open the video file | |
import tensorflow as tf | |
print(tf.config.list_physical_devices("GPU")) | |
model = tf.keras.models.load_model('cnn.keras') | |
cap = cv2.VideoCapture(video_path) | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
# Calculate frame skipping interval based on 0.5 seconds | |
skip_interval = int(fps * 0.5) # Skip frames to achieve 1 frame every 0.5 seconds | |
# Create a temporary file for the output video | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_output: | |
temp_output_path = temp_output.name | |
# Output video settings | |
out = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height)) | |
frame_count = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Only process frames at the specified interval | |
if frame_count % skip_interval == 0: | |
# Preprocess frame | |
preprocessed_frame = preprocess_frame(frame) | |
# Use the model to predict drowsiness | |
prediction = model.predict(preprocessed_frame) | |
drowsiness = np.argmax(prediction) | |
# Add label to frame with improved visibility | |
label = 'Drowsy' if drowsiness == 0 else 'Alert' | |
draw_label(frame, label, position=(50, 50)) # Use the draw_label function | |
# Write the frame (whether labeled or not) to the output video | |
out.write(frame) | |
frame_count += 1 | |
# Release resources | |
cap.release() | |
out.release() | |
return temp_output_path # Return the path to the temporary output video | |
# Gradio interface | |
interface = gr.Interface( | |
fn=predict_drowsiness, | |
inputs=gr.Video(), # Video input from webcam or upload | |
outputs="video", # Return a playable video with predictions | |
title="Drowsiness Detection in Video", | |
description="Upload a video or record one, and this tool will detect if the person is drowsy.", | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() |