Spaces:
Sleeping
Sleeping
| import cv2 | |
| import spaces | |
| import numpy as np | |
| import tensorflow as tf | |
| import gradio as gr | |
| import tempfile | |
| import os | |
| os.environ['CUDA_VISIBLE_DEVICES'] = "0" | |
| print(tf.config.list_physical_devices("GPU")) | |
| model = tf.keras.models.load_model('cnn.keras') | |
| # Function to preprocess each frame | |
| def preprocess_frame(frame): | |
| resized_frame = cv2.resize(frame, (224, 224)) # Adjust size based on your model's input shape | |
| normalized_frame = resized_frame / 255.0 | |
| return np.expand_dims(normalized_frame, axis=0) # Add batch dimension | |
| def predict_drowsiness(video_path): | |
| # Open the video file | |
| cap = cv2.VideoCapture(video_path) | |
| frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| # Create a temporary file for the output video | |
| with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_output: | |
| temp_output_path = temp_output.name | |
| # Output video settings | |
| out = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height)) | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| # Preprocess frame | |
| preprocessed_frame = preprocess_frame(frame) | |
| # Use the model to predict drowsiness | |
| prediction = model.predict(preprocessed_frame) | |
| drowsiness = np.argmax(prediction) | |
| # Add label to frame | |
| label = 'Drowsy' if drowsiness == 0 else 'Alert' | |
| cv2.putText(frame, label, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
| # Write the frame with label to the output video | |
| out.write(frame) | |
| # Release resources | |
| cap.release() | |
| out.release() | |
| return temp_output_path # Return the path to the temporary output video | |
| # Gradio interface | |
| interface = gr.Interface( | |
| fn=predict_drowsiness, | |
| inputs=gr.Video(), # Video input from webcam or upload | |
| outputs="video", # Return a playable video with predictions | |
| title="Drowsiness Detection in Video", | |
| description="Upload a video or record one, and this tool will detect if the person is drowsy.", | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| interface.launch() |