elismasilva commited on
Commit
c4b1a2f
·
1 Parent(s): 2a0761a

Initial commit

Browse files
Files changed (5) hide show
  1. .gitignore +10 -0
  2. README.md +1 -1
  3. app.py +413 -0
  4. mixture_tiling_sdxl.py +1198 -0
  5. requirements.txt +10 -0
.gitignore ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ *.py[cod]
3
+ /.vs
4
+ .vscode/
5
+ .idea/
6
+ venv/
7
+ .venv/
8
+ *.log
9
+ .DS_Store
10
+ .gradio
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Mixture Of Diffusers Sdxl Tiling
3
  emoji: 🐢
4
  colorFrom: purple
5
  colorTo: red
 
1
  ---
2
+ title: Mixture Of Diffusers SDXL Tiling
3
  emoji: 🐢
4
  colorFrom: purple
5
  colorTo: red
app.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import gradio as gr
3
+ import numpy as np
4
+ import spaces
5
+ import torch
6
+ from diffusers import AutoencoderKL
7
+ from mixture_tiling_sdxl import StableDiffusionXLTilingPipeline
8
+
9
+ MAX_SEED = np.iinfo(np.int32).max
10
+ SCHEDULERS = [
11
+ "LMSDiscreteScheduler",
12
+ "DEISMultistepScheduler",
13
+ "HeunDiscreteScheduler",
14
+ "EulerAncestralDiscreteScheduler",
15
+ "EulerDiscreteScheduler",
16
+ "DPMSolverMultistepScheduler",
17
+ "DPMSolverMultistepScheduler-Karras",
18
+ "DPMSolverMultistepScheduler-Karras-SDE",
19
+ "UniPCMultistepScheduler"
20
+ ]
21
+
22
+ vae = AutoencoderKL.from_pretrained(
23
+ "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
24
+ ).to("cuda")
25
+
26
+ model_id="stablediffusionapi/yamermix-v8-vae"
27
+ pipe = StableDiffusionXLTilingPipeline.from_pretrained(
28
+ model_id,
29
+ torch_dtype=torch.float16,
30
+ vae=vae,
31
+ use_safetensors=False, #for yammermix
32
+ #variant="fp16",
33
+ ).to("cuda")
34
+
35
+ #pipe.enable_model_cpu_offload() #<< Enable this if you have limited VRAM
36
+ pipe.enable_vae_tiling()
37
+ pipe.enable_vae_slicing()
38
+
39
+ #region functions
40
+ def select_scheduler(scheduler_name):
41
+ scheduler = scheduler_name.split("-")
42
+ scheduler_class_name = scheduler[0]
43
+ add_kwargs = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "num_train_timesteps": 1000}
44
+ if len(scheduler) > 1:
45
+ add_kwargs["use_karras_sigmas"] = True
46
+ if len(scheduler) > 2:
47
+ add_kwargs["algorithm_type"] = "sde-dpmsolver++"
48
+ import diffusers
49
+ scheduler = getattr(diffusers, scheduler_class_name)
50
+ scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs)
51
+ return scheduler
52
+
53
+ @spaces.GPU(duration=16)
54
+ def predict(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width):
55
+ global pipe
56
+
57
+ # Set selected scheduler
58
+ print(f"Using scheduler: {scheduler}...")
59
+ pipe.scheduler = select_scheduler(scheduler)
60
+
61
+ # Set seed
62
+ generator = torch.Generator("cuda").manual_seed(generation_seed)
63
+
64
+ target_height = int(target_height)
65
+ target_width = int(target_width)
66
+ tile_height = int(tile_height)
67
+ tile_width = int(tile_width)
68
+
69
+ # Mixture of Diffusers generation
70
+ image = pipe(
71
+ prompt=[
72
+ [
73
+ left_prompt,
74
+ center_prompt,
75
+ right_prompt,
76
+ ]
77
+ ],
78
+ negative_prompt=negative_prompt,
79
+ tile_height=tile_height,
80
+ tile_width=tile_width,
81
+ tile_row_overlap=0,
82
+ tile_col_overlap=overlap_pixels,
83
+ guidance_scale_tiles=[[left_gs, center_gs, right_gs]],
84
+ height=target_height,
85
+ width=target_width,
86
+ target_size=(target_height, target_width),
87
+ generator=generator,
88
+ num_inference_steps=steps,
89
+ )["images"][0]
90
+
91
+ return image
92
+
93
+ def calc_tile_size(target_height, target_width, overlap_pixels, max_tile_width_size=1280):
94
+ num_cols=3
95
+ num_rows=1
96
+ min_tile_dimension=8
97
+ reduction_step=8
98
+ max_tile_height_size=1024
99
+ best_tile_width = 0
100
+ best_tile_height = 0
101
+ best_adjusted_target_width = 0
102
+ best_adjusted_target_height = 0
103
+ found_valid_solution = False
104
+
105
+ # Adjust Tile Width
106
+ tile_width = max_tile_width_size
107
+ tile_height = max_tile_height_size
108
+
109
+ while tile_width >= min_tile_dimension:
110
+ horizontal_borders = num_cols - 1
111
+ total_horizontal_overlap_pixels = (overlap_pixels * horizontal_borders)
112
+ adjusted_target_width = tile_width * num_cols - total_horizontal_overlap_pixels
113
+
114
+ vertical_borders = num_rows - 1
115
+ total_vertical_overlap_pixels = (overlap_pixels * vertical_borders)
116
+ adjusted_target_height = tile_height * num_rows - total_vertical_overlap_pixels
117
+
118
+ if tile_width <= max_tile_width_size and adjusted_target_width <= target_width:
119
+ if adjusted_target_width > best_adjusted_target_width:
120
+ best_tile_width = tile_width
121
+ best_adjusted_target_width = adjusted_target_width
122
+ found_valid_solution = True
123
+
124
+ tile_width -= reduction_step
125
+
126
+ # Adjust Tile Height
127
+ if found_valid_solution:
128
+ tile_width = best_tile_width
129
+ tile_height = max_tile_height_size
130
+
131
+ while tile_height >= min_tile_dimension:
132
+ horizontal_borders = num_cols - 1
133
+ total_horizontal_overlap_pixels = (overlap_pixels * horizontal_borders)
134
+ adjusted_target_width = tile_width * num_cols - total_horizontal_overlap_pixels
135
+
136
+ vertical_borders = num_rows - 1
137
+ total_vertical_overlap_pixels = (overlap_pixels * vertical_borders)
138
+ adjusted_target_height = tile_height * num_rows - total_vertical_overlap_pixels
139
+
140
+ if tile_height <= max_tile_height_size and adjusted_target_height <= target_height:
141
+ if adjusted_target_height > best_adjusted_target_height:
142
+ best_tile_height = tile_height
143
+ best_adjusted_target_height = adjusted_target_height
144
+
145
+ tile_height -= reduction_step
146
+
147
+ new_target_height = best_adjusted_target_height
148
+ new_target_width = best_adjusted_target_width
149
+ tile_width = best_tile_width
150
+ tile_height = best_tile_height
151
+
152
+ print("--- TILE SIZE CALCULATED VALUES ---")
153
+ print(f"Overlap pixels (requested): {overlap_pixels}")
154
+ print(f"Tile Height (divisible by 8, max {max_tile_height_size}): {tile_height}")
155
+ print(f"Tile Width (divisible by 8, max {max_tile_width_size}): {tile_width}")
156
+ print(f"Number of Columns (horizontal tiles): {num_cols}")
157
+ print(f"Number of Rows (vertical tiles): {num_rows}")
158
+ print(f"Original Target Height: {target_height}")
159
+ print(f"Original Target Width: {target_width}")
160
+ print(f"New Target Height (total covered height): {new_target_height}")
161
+ print(f"New Target Width (total covered width): {new_target_width}\n")
162
+
163
+ return new_target_height, new_target_width, tile_height, tile_width
164
+
165
+ def do_calc_tile(target_height, target_width, overlap_pixels, max_tile_size):
166
+ new_target_height, new_target_width, tile_height, tile_width = calc_tile_size(target_height, target_width, overlap_pixels, max_tile_size)
167
+ return gr.update(value=tile_height), gr.update(value=tile_width), gr.update(value=new_target_height), gr.update(value=new_target_width)
168
+
169
+ def clear_result():
170
+ return gr.update(value=None)
171
+
172
+ def run_for_examples(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width, max_tile_width):
173
+ return predict(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width)
174
+
175
+ def randomize_seed_fn(generation_seed: int, randomize_seed: bool) -> int:
176
+ if randomize_seed:
177
+ generation_seed = random.randint(0, MAX_SEED)
178
+ return generation_seed
179
+
180
+ css = """
181
+ .gradio-container .fillable {
182
+ width: 95% !important;
183
+ max-width: unset !important;
184
+ }
185
+ """
186
+
187
+ title = """<h1 align="center">Mixture-of-Diffusers for SDXL Tiling Pipeline</h1>
188
+ <div style="display: flex; flex-direction: column; justify-content: center; align-items: center; text-align: center; overflow:hidden;">
189
+ <p>This project implements an SDXL pipeline based on the original project, <a href='https://github.com/albarji/mixture-of-diffusers'>Mixture-of-Diffusers</a>. For more information, see the <a href='https://arxiv.org/abs/2302.02412'>Paper</a>.</p>
190
+ <div style="display: flex; flex-direction: row; gap: 20px; justify-content: center;"> <!-- Novo div flex container para os dois últimos parágrafos -->
191
+ <p style="display: flex;gap: 6px;margin: 0; transform: translateY(40%);">
192
+ <a href="https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling?duplicate=true">
193
+ <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
194
+ </a> to skip the queue and enjoy faster inference on the GPU of your choice
195
+ </p>
196
+ <p><a href='https://ko-fi.com/S6S71ACXMR' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a></p>
197
+ </div>
198
+ </div>
199
+ """
200
+ tips="""
201
+ ### Method
202
+ The method proposed here strives to provide a better tool for image composition by using several diffusion processes in parallel, each configured with a specific prompt and settings, and focused on a particular region of the image. The mixture of diffusion processes is done in a way that harmonizes the generation process, preventing "seam" effects in the generated image.
203
+ Using several diffusion processes in parallel has also practical advantages when generating very large images, as the GPU memory requirements are similar to that of generating an image of the size of a single tile.
204
+ For practical demonstration purposes, this demo only covers image generation using 1x3 tiles. However, in the pipeline, you can freely increase the number of rows and columns as well as specify a row overlap.
205
+
206
+ ### Tips
207
+ 1. Describe the same environment for all image elements in your prompt. This helps to better harmonize the final image.
208
+ 2. Keep the same stylization in both prompts.
209
+ 3. Test different overlap sizes.
210
+ 4. Test fews increments on seed.
211
+ 5. This may take a while.
212
+ 6. Enjoy!
213
+ """
214
+
215
+ about = r"""
216
+ 📧 **Contact**
217
+ <br>
218
+ If you have any questions or suggestions, feel free to send your question to <b>[email protected]</b>.
219
+ """
220
+
221
+ with gr.Blocks(css=css) as app:
222
+ gr.Markdown(title)
223
+
224
+ with gr.Row():
225
+ with gr.Column(scale=7):
226
+ generate_button = gr.Button("Generate")
227
+ with gr.Row():
228
+ with gr.Column(scale=1):
229
+ gr.Markdown("### Left region")
230
+ left_prompt = gr.Textbox(lines=4,
231
+ label="Prompt for left side of the image")
232
+ left_gs = gr.Slider(minimum=0,
233
+ maximum=15,
234
+ value=7,
235
+ step=1,
236
+ label="Left CFG scale")
237
+ with gr.Column(scale=1):
238
+ gr.Markdown("### Center region")
239
+ center_prompt = gr.Textbox(lines=4,
240
+ label="Prompt for the center of the image")
241
+ center_gs = gr.Slider(minimum=0,
242
+ maximum=15,
243
+ value=7,
244
+ step=1,
245
+ label="Center CFG scale")
246
+ with gr.Column(scale=1):
247
+ gr.Markdown("### Right region")
248
+ right_prompt = gr.Textbox(lines=4,
249
+ label="Prompt for the right side of the image")
250
+ right_gs = gr.Slider(minimum=0,
251
+ maximum=15,
252
+ value=7,
253
+ step=1,
254
+ label="Right CFG scale")
255
+ with gr.Row():
256
+ negative_prompt = gr.Textbox(lines=2,
257
+ label="Negative prompt for the image",
258
+ value="nsfw, lowres, bad anatomy, bad hands, duplicate, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry")
259
+ with gr.Row():
260
+ result = gr.Image(
261
+ label="Generated Image",
262
+ show_label=True,
263
+ format="png",
264
+ interactive=False,
265
+ # allow_preview=True,
266
+ # preview=True,
267
+ scale=1,
268
+
269
+ )
270
+ with gr.Column():
271
+ gr.Markdown(tips)
272
+ with gr.Sidebar(label="Parameters", open=True):
273
+ gr.Markdown("### General parameters")
274
+ with gr.Row():
275
+ height = gr.Slider(label="Height",
276
+ value=1024,
277
+ step=8,
278
+ visible=True,
279
+ minimum=512,
280
+ maximum=1024)
281
+ width = gr.Slider(label="Width",
282
+ value=1280,
283
+ step=8,
284
+ visible=True,
285
+ minimum=512,
286
+ maximum=3840)
287
+ overlap = gr.Slider(minimum=0,
288
+ maximum=512,
289
+ value=128,
290
+ step=8,
291
+ label="Tile Overlap")
292
+ max_tile_size = gr.Dropdown(label="Max. Tile Size", choices=[1024, 1280], value=1280)
293
+ calc_tile = gr.Button("Calculate Tile Size")
294
+ with gr.Row():
295
+ tile_height = gr.Textbox(label="Tile height", value=1024, interactive=False)
296
+ tile_width = gr.Textbox(label="Tile width", value=1024, interactive=False)
297
+ with gr.Row():
298
+ new_target_height = gr.Textbox(label="New image height", value=1024, interactive=False)
299
+ new_target_width = gr.Textbox(label="New image width", value=1024, interactive=False)
300
+ with gr.Row():
301
+ steps = gr.Slider(minimum=1,
302
+ maximum=50,
303
+ value=30,
304
+ step=1,
305
+ label="Inference steps")
306
+
307
+ generation_seed = gr.Slider(label="Seed",
308
+ minimum=0,
309
+ maximum=MAX_SEED,
310
+ step=1,
311
+ value=0)
312
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
313
+ with gr.Row():
314
+ scheduler = gr.Dropdown(
315
+ label="Schedulers",
316
+ choices=SCHEDULERS,
317
+ value=SCHEDULERS[0],
318
+ )
319
+ with gr.Row():
320
+ gr.Examples(
321
+ examples=[
322
+ [
323
+ "Iron Man, repulsor rays blasting enemies in destroyed cityscape, sparks, energy trails, crumbling skyscrapers, smoke, debris, cinematic lighting, photorealistic, intense action. Focus: Iron Man.",
324
+ "Captain America charging forward, vibranium shield deflecting energy blasts in destroyed cityscape, collapsing buildings, rubble streets, battle-damaged suit, determined expression, distant explosions, cinematic composition, realistic rendering. Focus: Captain America.",
325
+ "Thor wielding Stormbreaker in destroyed cityscape, lightning crackling, powerful strike downwards, shattered buildings, burning debris, ground trembling, Asgardian armor, cinematic photography, realistic details. Focus: Thor.",
326
+ negative_prompt.value,
327
+ 5, 5, 5,
328
+ 160,
329
+ 30,
330
+ 1706922014,
331
+ "UniPCMultistepScheduler",
332
+ 1024,
333
+ 1280,
334
+ 1024,
335
+ 3840,
336
+ 1024
337
+ ],
338
+ [
339
+ "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
340
+ "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
341
+ "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
342
+ negative_prompt.value,
343
+ 7, 7, 7,
344
+ 256,
345
+ 30,
346
+ 297984183,
347
+ "DPMSolverMultistepScheduler-Karras-SDE",
348
+ 1024,
349
+ 1280,
350
+ 1024,
351
+ 3840,
352
+ 1280
353
+ ],
354
+ [
355
+ "Abstract decorative illustration, by joan miro and gustav klimt and marlina vera and loish, elegant, intricate, highly detailed, smooth, sharp focus, vibrant colors, artstation, stunning masterpiece",
356
+ "Abstract decorative illustration, by joan miro and gustav klimt and marlina vera and loish, elegant, intricate, highly detailed, smooth, sharp focus, vibrant colors, artstation, stunning masterpiece",
357
+ "Abstract decorative illustration, by joan miro and gustav klimt and marlina vera and loish, elegant, intricate, highly detailed, smooth, sharp focus, vibrant colors, artstation, stunning masterpiece",
358
+ negative_prompt.value,
359
+ 7, 7, 7,
360
+ 128,
361
+ 30,
362
+ 580541206,
363
+ "LMSDiscreteScheduler",
364
+ 1024,
365
+ 768,
366
+ 1024,
367
+ 2048,
368
+ 1280
369
+ ],
370
+ [
371
+ "Magical diagrams and runes written with chalk on a blackboard, elegant, intricate, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
372
+ "Magical diagrams and runes written with chalk on a blackboard, elegant, intricate, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
373
+ "Magical diagrams and runes written with chalk on a blackboard, elegant, intricate, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
374
+ negative_prompt.value,
375
+ 9, 9, 9,
376
+ 128,
377
+ 30,
378
+ 12591765619,
379
+ "LMSDiscreteScheduler",
380
+ 1024,
381
+ 768,
382
+ 1024,
383
+ 2048,
384
+ 1280
385
+ ]
386
+ ],
387
+ inputs=[left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap, steps, generation_seed, scheduler, tile_height, tile_width, height, width, max_tile_size],
388
+ fn=run_for_examples,
389
+ outputs=result,
390
+ cache_examples=True
391
+ )
392
+
393
+ event_calc_tile_size={"fn": do_calc_tile, "inputs":[height, width, overlap, max_tile_size], "outputs":[tile_height, tile_width, new_target_height, new_target_width]}
394
+ calc_tile.click(**event_calc_tile_size)
395
+
396
+ generate_button.click(
397
+ fn=clear_result,
398
+ inputs=None,
399
+ outputs=result,
400
+ ).then(**event_calc_tile_size
401
+ ).then(
402
+ fn=randomize_seed_fn,
403
+ inputs=[generation_seed, randomize_seed],
404
+ outputs=generation_seed,
405
+ queue=False,
406
+ api_name=False,
407
+ ).then(
408
+ fn=predict,
409
+ inputs=[left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap, steps, generation_seed, scheduler, tile_height, tile_width, new_target_height, new_target_width],
410
+ outputs=result,
411
+ )
412
+ gr.Markdown(about)
413
+ app.launch(share=False)
mixture_tiling_sdxl.py ADDED
@@ -0,0 +1,1198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from enum import Enum
16
+ import inspect
17
+ from typing import Any, Dict, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ from transformers import (
21
+ CLIPImageProcessor,
22
+ CLIPTextModel,
23
+ CLIPTextModelWithProjection,
24
+ CLIPTokenizer,
25
+ CLIPVisionModelWithProjection,
26
+ )
27
+
28
+ from diffusers.image_processor import VaeImageProcessor
29
+ from diffusers.loaders import (
30
+ FromSingleFileMixin,
31
+ IPAdapterMixin,
32
+ StableDiffusionXLLoraLoaderMixin,
33
+ TextualInversionLoaderMixin,
34
+ )
35
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
36
+ from diffusers.models.attention_processor import (
37
+ AttnProcessor2_0,
38
+ FusedAttnProcessor2_0,
39
+ XFormersAttnProcessor,
40
+ )
41
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
42
+ from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
43
+ from diffusers.utils import (
44
+ USE_PEFT_BACKEND,
45
+ is_invisible_watermark_available,
46
+ is_torch_xla_available,
47
+ logging,
48
+ replace_example_docstring,
49
+ scale_lora_layers,
50
+ unscale_lora_layers,
51
+ )
52
+ from diffusers.utils.torch_utils import randn_tensor
53
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
54
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
55
+
56
+ try:
57
+ from ligo.segments import segment
58
+ except ImportError:
59
+ raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline")
60
+
61
+ if is_invisible_watermark_available():
62
+ from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
63
+
64
+ if is_torch_xla_available():
65
+ import torch_xla.core.xla_model as xm
66
+
67
+ XLA_AVAILABLE = True
68
+ else:
69
+ XLA_AVAILABLE = False
70
+
71
+
72
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
73
+
74
+ EXAMPLE_DOC_STRING = """
75
+ Examples:
76
+ ```py
77
+ >>> import torch
78
+ >>> from diffusers import StableDiffusionXLPipeline
79
+
80
+ >>> pipe = StableDiffusionXLPipeline.from_pretrained(
81
+ ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
82
+ ... )
83
+ >>> pipe = pipe.to("cuda")
84
+
85
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
86
+ >>> image = pipe(prompt).images[0]
87
+ ```
88
+ """
89
+
90
+ def _tile2pixel_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap):
91
+ """Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image
92
+
93
+ Returns a tuple with:
94
+ - Starting coordinates of rows in pixel space
95
+ - Ending coordinates of rows in pixel space
96
+ - Starting coordinates of columns in pixel space
97
+ - Ending coordinates of columns in pixel space
98
+ """
99
+ px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
100
+ px_row_end = px_row_init + tile_height
101
+ px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)
102
+ px_col_end = px_col_init + tile_width
103
+ return px_row_init, px_row_end, px_col_init, px_col_end
104
+
105
+
106
+ def _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end):
107
+ """Translates coordinates in pixel space to coordinates in latent space"""
108
+ return px_row_init // 8, px_row_end // 8, px_col_init // 8, px_col_end // 8
109
+
110
+
111
+ def _tile2latent_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap):
112
+ """Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image
113
+
114
+ Returns a tuple with:
115
+ - Starting coordinates of rows in latent space
116
+ - Ending coordinates of rows in latent space
117
+ - Starting coordinates of columns in latent space
118
+ - Ending coordinates of columns in latent space
119
+ """
120
+ px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
121
+ tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
122
+ )
123
+ return _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end)
124
+
125
+
126
+ def _tile2latent_exclusive_indices(
127
+ tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, rows, columns
128
+ ):
129
+ """Given a tile row and column numbers returns the range of latents affected only by that tile in the overall image
130
+
131
+ Returns a tuple with:
132
+ - Starting coordinates of rows in latent space
133
+ - Ending coordinates of rows in latent space
134
+ - Starting coordinates of columns in latent space
135
+ - Ending coordinates of columns in latent space
136
+ """
137
+ row_init, row_end, col_init, col_end = _tile2latent_indices(
138
+ tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
139
+ )
140
+ row_segment = segment(row_init, row_end)
141
+ col_segment = segment(col_init, col_end)
142
+ # Iterate over the rest of tiles, clipping the region for the current tile
143
+ for row in range(rows):
144
+ for column in range(columns):
145
+ if row != tile_row and column != tile_col:
146
+ clip_row_init, clip_row_end, clip_col_init, clip_col_end = _tile2latent_indices(
147
+ row, column, tile_width, tile_height, tile_row_overlap, tile_col_overlap
148
+ )
149
+ row_segment = row_segment - segment(clip_row_init, clip_row_end)
150
+ col_segment = col_segment - segment(clip_col_init, clip_col_end)
151
+ # return row_init, row_end, col_init, col_end
152
+ return row_segment[0], row_segment[1], col_segment[0], col_segment[1]
153
+
154
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
155
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
156
+ r"""
157
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
158
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
159
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
160
+
161
+ Args:
162
+ noise_cfg (`torch.Tensor`):
163
+ The predicted noise tensor for the guided diffusion process.
164
+ noise_pred_text (`torch.Tensor`):
165
+ The predicted noise tensor for the text-guided diffusion process.
166
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
167
+ A rescale factor applied to the noise predictions.
168
+
169
+ Returns:
170
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
171
+ """
172
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
173
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
174
+ # rescale the results from guidance (fixes overexposure)
175
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
176
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
177
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
178
+ return noise_cfg
179
+
180
+
181
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
182
+ def retrieve_timesteps(
183
+ scheduler,
184
+ num_inference_steps: Optional[int] = None,
185
+ device: Optional[Union[str, torch.device]] = None,
186
+ timesteps: Optional[List[int]] = None,
187
+ sigmas: Optional[List[float]] = None,
188
+ **kwargs,
189
+ ):
190
+ r"""
191
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
192
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
193
+
194
+ Args:
195
+ scheduler (`SchedulerMixin`):
196
+ The scheduler to get timesteps from.
197
+ num_inference_steps (`int`):
198
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
199
+ must be `None`.
200
+ device (`str` or `torch.device`, *optional*):
201
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
202
+ timesteps (`List[int]`, *optional*):
203
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
204
+ `num_inference_steps` and `sigmas` must be `None`.
205
+ sigmas (`List[float]`, *optional*):
206
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
207
+ `num_inference_steps` and `timesteps` must be `None`.
208
+
209
+ Returns:
210
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
211
+ second element is the number of inference steps.
212
+ """
213
+
214
+ if timesteps is not None and sigmas is not None:
215
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
216
+ if timesteps is not None:
217
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
218
+ if not accepts_timesteps:
219
+ raise ValueError(
220
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
221
+ f" timestep schedules. Please check whether you are using the correct scheduler."
222
+ )
223
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
224
+ timesteps = scheduler.timesteps
225
+ num_inference_steps = len(timesteps)
226
+ elif sigmas is not None:
227
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
228
+ if not accept_sigmas:
229
+ raise ValueError(
230
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
231
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
232
+ )
233
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
234
+ timesteps = scheduler.timesteps
235
+ num_inference_steps = len(timesteps)
236
+ else:
237
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
238
+ timesteps = scheduler.timesteps
239
+ return timesteps, num_inference_steps
240
+
241
+
242
+ class StableDiffusionXLTilingPipeline(
243
+ DiffusionPipeline,
244
+ StableDiffusionMixin,
245
+ FromSingleFileMixin,
246
+ StableDiffusionXLLoraLoaderMixin,
247
+ TextualInversionLoaderMixin,
248
+ IPAdapterMixin,
249
+ ):
250
+ r"""
251
+ Pipeline for text-to-image generation using Stable Diffusion XL.
252
+
253
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
254
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
255
+
256
+ The pipeline also inherits the following loading methods:
257
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
258
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
259
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
260
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
261
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
262
+
263
+ Args:
264
+ vae ([`AutoencoderKL`]):
265
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
266
+ text_encoder ([`CLIPTextModel`]):
267
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
268
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
269
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
270
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
271
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
272
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
273
+ specifically the
274
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
275
+ variant.
276
+ tokenizer (`CLIPTokenizer`):
277
+ Tokenizer of class
278
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
279
+ tokenizer_2 (`CLIPTokenizer`):
280
+ Second Tokenizer of class
281
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
282
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
283
+ scheduler ([`SchedulerMixin`]):
284
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
285
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
286
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
287
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
288
+ `stabilityai/stable-diffusion-xl-base-1-0`.
289
+ add_watermarker (`bool`, *optional*):
290
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
291
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
292
+ watermarker will be used.
293
+ """
294
+
295
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
296
+ _optional_components = [
297
+ "tokenizer",
298
+ "tokenizer_2",
299
+ "text_encoder",
300
+ "text_encoder_2",
301
+ "image_encoder",
302
+ "feature_extractor",
303
+ ]
304
+
305
+ def __init__(
306
+ self,
307
+ vae: AutoencoderKL,
308
+ text_encoder: CLIPTextModel,
309
+ text_encoder_2: CLIPTextModelWithProjection,
310
+ tokenizer: CLIPTokenizer,
311
+ tokenizer_2: CLIPTokenizer,
312
+ unet: UNet2DConditionModel,
313
+ scheduler: KarrasDiffusionSchedulers,
314
+ image_encoder: CLIPVisionModelWithProjection = None,
315
+ feature_extractor: CLIPImageProcessor = None,
316
+ force_zeros_for_empty_prompt: bool = True,
317
+ add_watermarker: Optional[bool] = None,
318
+ ):
319
+ super().__init__()
320
+
321
+ self.register_modules(
322
+ vae=vae,
323
+ text_encoder=text_encoder,
324
+ text_encoder_2=text_encoder_2,
325
+ tokenizer=tokenizer,
326
+ tokenizer_2=tokenizer_2,
327
+ unet=unet,
328
+ scheduler=scheduler,
329
+ image_encoder=image_encoder,
330
+ feature_extractor=feature_extractor,
331
+ )
332
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
333
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
334
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
335
+
336
+ self.default_sample_size = (
337
+ self.unet.config.sample_size
338
+ if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size")
339
+ else 128
340
+ )
341
+
342
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
343
+
344
+ if add_watermarker:
345
+ self.watermark = StableDiffusionXLWatermarker()
346
+ else:
347
+ self.watermark = None
348
+
349
+ class SeedTilesMode(Enum):
350
+ """Modes in which the latents of a particular tile can be re-seeded"""
351
+
352
+ FULL = "full"
353
+ EXCLUSIVE = "exclusive"
354
+
355
+ def encode_prompt(
356
+ self,
357
+ prompt: str,
358
+ prompt_2: Optional[str] = None,
359
+ device: Optional[torch.device] = None,
360
+ num_images_per_prompt: int = 1,
361
+ do_classifier_free_guidance: bool = True,
362
+ negative_prompt: Optional[str] = None,
363
+ negative_prompt_2: Optional[str] = None,
364
+ prompt_embeds: Optional[torch.Tensor] = None,
365
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
366
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
367
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
368
+ lora_scale: Optional[float] = None,
369
+ clip_skip: Optional[int] = None,
370
+ ):
371
+ r"""
372
+ Encodes the prompt into text encoder hidden states.
373
+
374
+ Args:
375
+ prompt (`str` or `List[str]`, *optional*):
376
+ prompt to be encoded
377
+ prompt_2 (`str` or `List[str]`, *optional*):
378
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
379
+ used in both text-encoders
380
+ device: (`torch.device`):
381
+ torch device
382
+ num_images_per_prompt (`int`):
383
+ number of images that should be generated per prompt
384
+ do_classifier_free_guidance (`bool`):
385
+ whether to use classifier free guidance or not
386
+ negative_prompt (`str` or `List[str]`, *optional*):
387
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
388
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
389
+ less than `1`).
390
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
391
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
392
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
393
+ prompt_embeds (`torch.Tensor`, *optional*):
394
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
395
+ provided, text embeddings will be generated from `prompt` input argument.
396
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
397
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
398
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
399
+ argument.
400
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
401
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
402
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
403
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
404
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
405
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
406
+ input argument.
407
+ lora_scale (`float`, *optional*):
408
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
409
+ clip_skip (`int`, *optional*):
410
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
411
+ the output of the pre-final layer will be used for computing the prompt embeddings.
412
+ """
413
+ device = device or self._execution_device
414
+
415
+ # set lora scale so that monkey patched LoRA
416
+ # function of text encoder can correctly access it
417
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
418
+ self._lora_scale = lora_scale
419
+
420
+ # dynamically adjust the LoRA scale
421
+ if self.text_encoder is not None:
422
+ if not USE_PEFT_BACKEND:
423
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
424
+ else:
425
+ scale_lora_layers(self.text_encoder, lora_scale)
426
+
427
+ if self.text_encoder_2 is not None:
428
+ if not USE_PEFT_BACKEND:
429
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
430
+ else:
431
+ scale_lora_layers(self.text_encoder_2, lora_scale)
432
+
433
+ prompt = [prompt] if isinstance(prompt, str) else prompt
434
+
435
+ if prompt is not None:
436
+ batch_size = len(prompt)
437
+ else:
438
+ batch_size = prompt_embeds.shape[0]
439
+
440
+ # Define tokenizers and text encoders
441
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
442
+ text_encoders = (
443
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
444
+ )
445
+
446
+ if prompt_embeds is None:
447
+ prompt_2 = prompt_2 or prompt
448
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
449
+
450
+ # textual inversion: process multi-vector tokens if necessary
451
+ prompt_embeds_list = []
452
+ prompts = [prompt, prompt_2]
453
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
454
+ if isinstance(self, TextualInversionLoaderMixin):
455
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
456
+
457
+ text_inputs = tokenizer(
458
+ prompt,
459
+ padding="max_length",
460
+ max_length=tokenizer.model_max_length,
461
+ truncation=True,
462
+ return_tensors="pt",
463
+ )
464
+
465
+ text_input_ids = text_inputs.input_ids
466
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
467
+
468
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
469
+ text_input_ids, untruncated_ids
470
+ ):
471
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
472
+ logger.warning(
473
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
474
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
475
+ )
476
+
477
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
478
+
479
+ # We are only ALWAYS interested in the pooled output of the final text encoder
480
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
481
+ pooled_prompt_embeds = prompt_embeds[0]
482
+
483
+ if clip_skip is None:
484
+ prompt_embeds = prompt_embeds.hidden_states[-2]
485
+ else:
486
+ # "2" because SDXL always indexes from the penultimate layer.
487
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
488
+
489
+ prompt_embeds_list.append(prompt_embeds)
490
+
491
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
492
+
493
+ # get unconditional embeddings for classifier free guidance
494
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
495
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
496
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
497
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
498
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
499
+ negative_prompt = negative_prompt or ""
500
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
501
+
502
+ # normalize str to list
503
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
504
+ negative_prompt_2 = (
505
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
506
+ )
507
+
508
+ uncond_tokens: List[str]
509
+ if prompt is not None and type(prompt) is not type(negative_prompt):
510
+ raise TypeError(
511
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
512
+ f" {type(prompt)}."
513
+ )
514
+ elif batch_size != len(negative_prompt):
515
+ raise ValueError(
516
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
517
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
518
+ " the batch size of `prompt`."
519
+ )
520
+ else:
521
+ uncond_tokens = [negative_prompt, negative_prompt_2]
522
+
523
+ negative_prompt_embeds_list = []
524
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
525
+ if isinstance(self, TextualInversionLoaderMixin):
526
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
527
+
528
+ max_length = prompt_embeds.shape[1]
529
+ uncond_input = tokenizer(
530
+ negative_prompt,
531
+ padding="max_length",
532
+ max_length=max_length,
533
+ truncation=True,
534
+ return_tensors="pt",
535
+ )
536
+
537
+ negative_prompt_embeds = text_encoder(
538
+ uncond_input.input_ids.to(device),
539
+ output_hidden_states=True,
540
+ )
541
+
542
+ # We are only ALWAYS interested in the pooled output of the final text encoder
543
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
544
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
545
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
546
+
547
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
548
+
549
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
550
+
551
+ if self.text_encoder_2 is not None:
552
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
553
+ else:
554
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
555
+
556
+ bs_embed, seq_len, _ = prompt_embeds.shape
557
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
558
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
559
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
560
+
561
+ if do_classifier_free_guidance:
562
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
563
+ seq_len = negative_prompt_embeds.shape[1]
564
+
565
+ if self.text_encoder_2 is not None:
566
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
567
+ else:
568
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
569
+
570
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
571
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
572
+
573
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
574
+ bs_embed * num_images_per_prompt, -1
575
+ )
576
+ if do_classifier_free_guidance:
577
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
578
+ bs_embed * num_images_per_prompt, -1
579
+ )
580
+
581
+ if self.text_encoder is not None:
582
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
583
+ # Retrieve the original scale by scaling back the LoRA layers
584
+ unscale_lora_layers(self.text_encoder, lora_scale)
585
+
586
+ if self.text_encoder_2 is not None:
587
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
588
+ # Retrieve the original scale by scaling back the LoRA layers
589
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
590
+
591
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
592
+
593
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
594
+ def prepare_extra_step_kwargs(self, generator, eta):
595
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
596
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
597
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
598
+ # and should be between [0, 1]
599
+
600
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
601
+ extra_step_kwargs = {}
602
+ if accepts_eta:
603
+ extra_step_kwargs["eta"] = eta
604
+
605
+ # check if the scheduler accepts generator
606
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
607
+ if accepts_generator:
608
+ extra_step_kwargs["generator"] = generator
609
+ return extra_step_kwargs
610
+
611
+ def check_inputs(
612
+ self,
613
+ prompt,
614
+ height,
615
+ width,
616
+ grid_cols,
617
+ seed_tiles_mode,
618
+ tiles_mode
619
+ ):
620
+ if height % 8 != 0 or width % 8 != 0:
621
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
622
+
623
+ if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
624
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
625
+
626
+ if not isinstance(prompt, list) or not all(isinstance(row, list) for row in prompt):
627
+ raise ValueError(f"`prompt` has to be a list of lists but is {type(prompt)}")
628
+
629
+ if not all(len(row) == grid_cols for row in prompt):
630
+ raise ValueError("All prompt rows must have the same number of prompt columns")
631
+
632
+ if not isinstance(seed_tiles_mode, str) and (
633
+ not isinstance(seed_tiles_mode, list) or not all(isinstance(row, list) for row in seed_tiles_mode)
634
+ ):
635
+ raise ValueError(f"`seed_tiles_mode` has to be a string or list of lists but is {type(prompt)}")
636
+
637
+ if any(mode not in tiles_mode for row in seed_tiles_mode for mode in row):
638
+ raise ValueError(f"Seed tiles mode must be one of {tiles_mode}")
639
+
640
+ def _get_add_time_ids(
641
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
642
+ ):
643
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
644
+
645
+ passed_add_embed_dim = (
646
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
647
+ )
648
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
649
+
650
+ if expected_add_embed_dim != passed_add_embed_dim:
651
+ raise ValueError(
652
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
653
+ )
654
+
655
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
656
+ return add_time_ids
657
+
658
+ def _gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype):
659
+ """Generates a gaussian mask of weights for tile contributions"""
660
+ import numpy as np
661
+ from numpy import exp, pi, sqrt
662
+
663
+ latent_width = tile_width // 8
664
+ latent_height = tile_height // 8
665
+
666
+ var = 0.01
667
+ midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
668
+ x_probs = [
669
+ exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var)
670
+ for x in range(latent_width)
671
+ ]
672
+ midpoint = latent_height / 2
673
+ y_probs = [
674
+ exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var)
675
+ for y in range(latent_height)
676
+ ]
677
+
678
+ weights_np = np.outer(y_probs, x_probs)
679
+ weights_torch = torch.tensor(weights_np, device=device)
680
+ weights_torch = weights_torch.to(dtype)
681
+ return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
682
+
683
+ def upcast_vae(self):
684
+ dtype = self.vae.dtype
685
+ self.vae.to(dtype=torch.float32)
686
+ use_torch_2_0_or_xformers = isinstance(
687
+ self.vae.decoder.mid_block.attentions[0].processor,
688
+ (
689
+ AttnProcessor2_0,
690
+ XFormersAttnProcessor,
691
+ FusedAttnProcessor2_0,
692
+ ),
693
+ )
694
+ # if xformers or torch_2_0 is used attention block does not need
695
+ # to be in float32 which can save lots of memory
696
+ if use_torch_2_0_or_xformers:
697
+ self.vae.post_quant_conv.to(dtype)
698
+ self.vae.decoder.conv_in.to(dtype)
699
+ self.vae.decoder.mid_block.to(dtype)
700
+
701
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
702
+ def get_guidance_scale_embedding(
703
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
704
+ ) -> torch.Tensor:
705
+ """
706
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
707
+
708
+ Args:
709
+ w (`torch.Tensor`):
710
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
711
+ embedding_dim (`int`, *optional*, defaults to 512):
712
+ Dimension of the embeddings to generate.
713
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
714
+ Data type of the generated embeddings.
715
+
716
+ Returns:
717
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
718
+ """
719
+ assert len(w.shape) == 1
720
+ w = w * 1000.0
721
+
722
+ half_dim = embedding_dim // 2
723
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
724
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
725
+ emb = w.to(dtype)[:, None] * emb[None, :]
726
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
727
+ if embedding_dim % 2 == 1: # zero pad
728
+ emb = torch.nn.functional.pad(emb, (0, 1))
729
+ assert emb.shape == (w.shape[0], embedding_dim)
730
+ return emb
731
+
732
+ @property
733
+ def guidance_scale(self):
734
+ return self._guidance_scale
735
+
736
+ @property
737
+ def clip_skip(self):
738
+ return self._clip_skip
739
+
740
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
741
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
742
+ # corresponds to doing no classifier free guidance.
743
+ @property
744
+ def do_classifier_free_guidance(self):
745
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
746
+
747
+ @property
748
+ def cross_attention_kwargs(self):
749
+ return self._cross_attention_kwargs
750
+
751
+ @property
752
+ def num_timesteps(self):
753
+ return self._num_timesteps
754
+
755
+ @property
756
+ def interrupt(self):
757
+ return self._interrupt
758
+
759
+ @torch.no_grad()
760
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
761
+ def __call__(
762
+ self,
763
+ prompt: Union[str, List[str]] = None,
764
+ height: Optional[int] = None,
765
+ width: Optional[int] = None,
766
+ num_inference_steps: int = 50,
767
+ guidance_scale: float = 5.0,
768
+ negative_prompt: Optional[Union[str, List[str]]] = None,
769
+ num_images_per_prompt: Optional[int] = 1,
770
+ eta: float = 0.0,
771
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
772
+ output_type: Optional[str] = "pil",
773
+ return_dict: bool = True,
774
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
775
+ original_size: Optional[Tuple[int, int]] = None,
776
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
777
+ target_size: Optional[Tuple[int, int]] = None,
778
+ negative_original_size: Optional[Tuple[int, int]] = None,
779
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
780
+ negative_target_size: Optional[Tuple[int, int]] = None,
781
+ clip_skip: Optional[int] = None,
782
+ tile_height: Optional[int] = 1024,
783
+ tile_width: Optional[int] = 1024,
784
+ tile_row_overlap: Optional[int] = 128,
785
+ tile_col_overlap: Optional[int] = 128,
786
+ guidance_scale_tiles: Optional[List[List[float]]] = None,
787
+ seed_tiles: Optional[List[List[int]]] = None,
788
+ seed_tiles_mode: Optional[Union[str, List[List[str]]]] = "full",
789
+ seed_reroll_regions: Optional[List[Tuple[int, int, int, int, int]]] = None,
790
+ **kwargs,
791
+ ):
792
+ r"""
793
+ Function invoked when calling the pipeline for generation.
794
+
795
+ Args:
796
+ prompt (`str` or `List[str]`, *optional*):
797
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
798
+ instead.
799
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
800
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
801
+ Anything below 512 pixels won't work well for
802
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
803
+ and checkpoints that are not specifically fine-tuned on low resolutions.
804
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
805
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
806
+ Anything below 512 pixels won't work well for
807
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
808
+ and checkpoints that are not specifically fine-tuned on low resolutions.
809
+ num_inference_steps (`int`, *optional*, defaults to 50):
810
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
811
+ expense of slower inference.
812
+ guidance_scale (`float`, *optional*, defaults to 5.0):
813
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
814
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
815
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
816
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
817
+ usually at the expense of lower image quality.
818
+ negative_prompt (`str` or `List[str]`, *optional*):
819
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
820
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
821
+ less than `1`).
822
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
823
+ The number of images to generate per prompt.
824
+ eta (`float`, *optional*, defaults to 0.0):
825
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
826
+ [`schedulers.DDIMScheduler`], will be ignored for others.
827
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
828
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
829
+ to make generation deterministic.
830
+ output_type (`str`, *optional*, defaults to `"pil"`):
831
+ The output format of the generate image. Choose between
832
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
833
+ return_dict (`bool`, *optional*, defaults to `True`):
834
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
835
+ of a plain tuple.
836
+ cross_attention_kwargs (`dict`, *optional*):
837
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
838
+ `self.processor` in
839
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
840
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
841
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
842
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
843
+ explained in section 2.2 of
844
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
845
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
846
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
847
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
848
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
849
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
850
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
851
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
852
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
853
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
854
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
855
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
856
+ micro-conditioning as explained in section 2.2 of
857
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
858
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
859
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
860
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
861
+ micro-conditioning as explained in section 2.2 of
862
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
863
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
864
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
865
+ To negatively condition the generation process based on a target image resolution. It should be as same
866
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
867
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
868
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
869
+ tile_height (`int`, *optional*, defaults to 1024):
870
+ Height of each grid tile in pixels.
871
+ tile_width (`int`, *optional*, defaults to 1024):
872
+ Width of each grid tile in pixels.
873
+ tile_row_overlap (`int`, *optional*, defaults to 128):
874
+ Number of overlapping pixels between tiles in consecutive rows.
875
+ tile_col_overlap (`int`, *optional*, defaults to 128):
876
+ Number of overlapping pixels between tiles in consecutive columns.
877
+ guidance_scale_tiles (`List[List[float]]`, *optional*):
878
+ Specific weights for classifier-free guidance in each tile. If `None`, the value provided in `guidance_scale` will be used.
879
+ seed_tiles (`List[List[int]]`, *optional*):
880
+ Specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard `generator` parameter.
881
+ seed_tiles_mode (`Union[str, List[List[str]]]`, *optional*, defaults to `"full"`):
882
+ Mode for seeding tiles, can be `"full"` or `"exclusive"`. If `"full"`, all the latents affected by the tile will be overridden. If `"exclusive"`, only the latents that are exclusively affected by this tile (and no other tiles) will be overridden.
883
+ seed_reroll_regions (`List[Tuple[int, int, int, int, int]]`, *optional*):
884
+ A list of tuples in the form of `(start_row, end_row, start_column, end_column, seed)` defining regions in pixel space for which the latents will be overridden using the given seed. Takes priority over `seed_tiles`.
885
+ **kwargs (`Dict[str, Any]`, *optional*):
886
+ Additional optional keyword arguments to be passed to the `unet.__call__` and `scheduler.step` functions.
887
+
888
+ Examples:
889
+
890
+ Returns:
891
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] or `tuple`:
892
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] if `return_dict` is True, otherwise a
893
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
894
+ """
895
+
896
+ # 0. Default height and width to unet
897
+ height = height or self.default_sample_size * self.vae_scale_factor
898
+ width = width or self.default_sample_size * self.vae_scale_factor
899
+
900
+ original_size = original_size or (height, width)
901
+ target_size = target_size or (height, width)
902
+
903
+ self._guidance_scale = guidance_scale
904
+ self._clip_skip = clip_skip
905
+ self._cross_attention_kwargs = cross_attention_kwargs
906
+ self._interrupt = False
907
+
908
+ grid_rows = len(prompt)
909
+ grid_cols = len(prompt[0])
910
+
911
+ tiles_mode = [mode.value for mode in self.SeedTilesMode]
912
+
913
+ if isinstance(seed_tiles_mode, str):
914
+ seed_tiles_mode = [[seed_tiles_mode for _ in range(len(row))] for row in prompt]
915
+
916
+ # 1. Check inputs. Raise error if not correct
917
+ self.check_inputs(
918
+ prompt,
919
+ height,
920
+ width,
921
+ grid_cols,
922
+ seed_tiles_mode,
923
+ tiles_mode,
924
+ )
925
+
926
+ if seed_reroll_regions is None:
927
+ seed_reroll_regions = []
928
+
929
+ batch_size = 1
930
+
931
+ device = self._execution_device
932
+
933
+ # update height and width tile size and tile overlap size
934
+ height = tile_height + (grid_rows - 1) * (tile_height - tile_row_overlap)
935
+ width = tile_width + (grid_cols - 1) * (tile_width - tile_col_overlap)
936
+
937
+ # 3. Encode input prompt
938
+ lora_scale = (
939
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
940
+ )
941
+ text_embeddings = [
942
+ [
943
+ self.encode_prompt(
944
+ prompt=col,
945
+ device=device,
946
+ num_images_per_prompt=num_images_per_prompt,
947
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
948
+ negative_prompt=negative_prompt,
949
+ prompt_embeds=None,
950
+ negative_prompt_embeds=None,
951
+ pooled_prompt_embeds=None,
952
+ negative_pooled_prompt_embeds=None,
953
+ lora_scale=lora_scale,
954
+ clip_skip=self.clip_skip,
955
+ )
956
+ for col in row
957
+ ]
958
+ for row in prompt
959
+ ]
960
+
961
+ # 3. Prepare latents
962
+ latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
963
+ dtype = text_embeddings[0][0][0].dtype
964
+ latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype)
965
+
966
+ # 3.1 overwrite latents for specific tiles if provided
967
+ if seed_tiles is not None:
968
+ for row in range(grid_rows):
969
+ for col in range(grid_cols):
970
+ if (seed_tile := seed_tiles[row][col]) is not None:
971
+ mode = seed_tiles_mode[row][col]
972
+ if mode == self.SeedTilesMode.FULL.value:
973
+ row_init, row_end, col_init, col_end = _tile2latent_indices(
974
+ row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
975
+ )
976
+ else:
977
+ row_init, row_end, col_init, col_end = _tile2latent_exclusive_indices(
978
+ row,
979
+ col,
980
+ tile_width,
981
+ tile_height,
982
+ tile_row_overlap,
983
+ tile_col_overlap,
984
+ grid_rows,
985
+ grid_cols,
986
+ )
987
+ tile_generator = torch.Generator(device).manual_seed(seed_tile)
988
+ tile_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init)
989
+ latents[:, :, row_init:row_end, col_init:col_end] = torch.randn(
990
+ tile_shape, generator=tile_generator, device=device
991
+ )
992
+
993
+ # 3.2 overwrite again for seed reroll regions
994
+ for row_init, row_end, col_init, col_end, seed_reroll in seed_reroll_regions:
995
+ row_init, row_end, col_init, col_end = _pixel2latent_indices(
996
+ row_init, row_end, col_init, col_end
997
+ ) # to latent space coordinates
998
+ reroll_generator = torch.Generator(device).manual_seed(seed_reroll)
999
+ region_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init)
1000
+ latents[:, :, row_init:row_end, col_init:col_end] = torch.randn(
1001
+ region_shape, generator=reroll_generator, device=device
1002
+ )
1003
+
1004
+ # 4. Prepare timesteps
1005
+ accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
1006
+ extra_set_kwargs = {}
1007
+ if accepts_offset:
1008
+ extra_set_kwargs["offset"] = 1
1009
+ timesteps, num_inference_steps = retrieve_timesteps(
1010
+ self.scheduler, num_inference_steps, device, None, None, **extra_set_kwargs
1011
+ )
1012
+
1013
+ # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
1014
+ if isinstance(self.scheduler, LMSDiscreteScheduler):
1015
+ latents = latents * self.scheduler.sigmas[0]
1016
+
1017
+ # 5. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1018
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1019
+
1020
+ # 6. Prepare added time ids & embeddings
1021
+ # text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
1022
+ embeddings_and_added_time = []
1023
+ for row in range(grid_rows):
1024
+ addition_embed_type_row = []
1025
+ for col in range(grid_cols):
1026
+ #extract generated values
1027
+ prompt_embeds = text_embeddings[row][col][0]
1028
+ negative_prompt_embeds = text_embeddings[row][col][1]
1029
+ pooled_prompt_embeds = text_embeddings[row][col][2]
1030
+ negative_pooled_prompt_embeds = text_embeddings[row][col][3]
1031
+
1032
+ add_text_embeds = pooled_prompt_embeds
1033
+ if self.text_encoder_2 is None:
1034
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1035
+ else:
1036
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1037
+ add_time_ids = self._get_add_time_ids(
1038
+ original_size,
1039
+ crops_coords_top_left,
1040
+ target_size,
1041
+ dtype=prompt_embeds.dtype,
1042
+ text_encoder_projection_dim=text_encoder_projection_dim,
1043
+ )
1044
+ if negative_original_size is not None and negative_target_size is not None:
1045
+ negative_add_time_ids = self._get_add_time_ids(
1046
+ negative_original_size,
1047
+ negative_crops_coords_top_left,
1048
+ negative_target_size,
1049
+ dtype=prompt_embeds.dtype,
1050
+ text_encoder_projection_dim=text_encoder_projection_dim,
1051
+ )
1052
+ else:
1053
+ negative_add_time_ids = add_time_ids
1054
+
1055
+ if self.do_classifier_free_guidance:
1056
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1057
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1058
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1059
+
1060
+ prompt_embeds = prompt_embeds.to(device)
1061
+ add_text_embeds = add_text_embeds.to(device)
1062
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1063
+ addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids))
1064
+ embeddings_and_added_time.append(addition_embed_type_row)
1065
+
1066
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1067
+
1068
+ # 7. Mask for tile weights strength
1069
+ tile_weights = self._gaussian_weights(tile_width, tile_height, batch_size, device, torch.float32)
1070
+
1071
+ # 8. Denoising loop
1072
+ self._num_timesteps = len(timesteps)
1073
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1074
+ for i, t in enumerate(timesteps):
1075
+ # Diffuse each tile
1076
+ noise_preds = []
1077
+ for row in range(grid_rows):
1078
+ noise_preds_row = []
1079
+ for col in range(grid_cols):
1080
+ if self.interrupt:
1081
+ continue
1082
+ px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
1083
+ row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
1084
+ )
1085
+ tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]
1086
+ # expand the latents if we are doing classifier free guidance
1087
+ latent_model_input = torch.cat([tile_latents] * 2) if self.do_classifier_free_guidance else latents
1088
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1089
+
1090
+ # predict the noise residual
1091
+ added_cond_kwargs = {"text_embeds": embeddings_and_added_time[row][col][1], "time_ids": embeddings_and_added_time[row][col][2]}
1092
+ with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype!=self.unet.dtype):
1093
+ noise_pred = self.unet(
1094
+ latent_model_input,
1095
+ t,
1096
+ encoder_hidden_states=embeddings_and_added_time[row][col][0],
1097
+ cross_attention_kwargs=self.cross_attention_kwargs,
1098
+ added_cond_kwargs=added_cond_kwargs,
1099
+ return_dict=False,
1100
+ )[0]
1101
+
1102
+ # perform guidance
1103
+ if self.do_classifier_free_guidance:
1104
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1105
+ guidance = (
1106
+ guidance_scale
1107
+ if guidance_scale_tiles is None or guidance_scale_tiles[row][col] is None
1108
+ else guidance_scale_tiles[row][col]
1109
+ )
1110
+ noise_pred_tile = noise_pred_uncond + guidance * (noise_pred_text - noise_pred_uncond)
1111
+ noise_preds_row.append(noise_pred_tile)
1112
+ noise_preds.append(noise_preds_row)
1113
+
1114
+ # Stitch noise predictions for all tiles
1115
+ noise_pred = torch.zeros(latents.shape, device=device)
1116
+ contributors = torch.zeros(latents.shape, device=device)
1117
+
1118
+ # Add each tile contribution to overall latents
1119
+ for row in range(grid_rows):
1120
+ for col in range(grid_cols):
1121
+ px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
1122
+ row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
1123
+ )
1124
+ noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
1125
+ noise_preds[row][col] * tile_weights
1126
+ )
1127
+ contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights
1128
+
1129
+ # Average overlapping areas with more than 1 contributor
1130
+ noise_pred /= contributors
1131
+ noise_pred = noise_pred.to(dtype)
1132
+
1133
+ # compute the previous noisy sample x_t -> x_t-1
1134
+ latents_dtype = latents.dtype
1135
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1136
+ if latents.dtype != latents_dtype:
1137
+ if torch.backends.mps.is_available():
1138
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1139
+ latents = latents.to(latents_dtype)
1140
+
1141
+ # update progress bar
1142
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1143
+ progress_bar.update()
1144
+
1145
+ if XLA_AVAILABLE:
1146
+ xm.mark_step()
1147
+
1148
+ if not output_type == "latent":
1149
+ # make sure the VAE is in float32 mode, as it overflows in float16
1150
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1151
+
1152
+ if needs_upcasting:
1153
+ self.upcast_vae()
1154
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1155
+ elif latents.dtype != self.vae.dtype:
1156
+ if torch.backends.mps.is_available():
1157
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1158
+ self.vae = self.vae.to(latents.dtype)
1159
+
1160
+ # unscale/denormalize the latents
1161
+ # denormalize with the mean and std if available and not None
1162
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1163
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1164
+ if has_latents_mean and has_latents_std:
1165
+ latents_mean = (
1166
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1167
+ )
1168
+ latents_std = (
1169
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1170
+ )
1171
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1172
+ else:
1173
+ latents = latents / self.vae.config.scaling_factor
1174
+
1175
+ image = self.vae.decode(latents, return_dict=False)[0]
1176
+
1177
+ # cast back to fp16 if needed
1178
+ if needs_upcasting:
1179
+ self.vae.to(dtype=torch.float16)
1180
+ else:
1181
+ image = latents
1182
+
1183
+ if not output_type == "latent":
1184
+ # apply watermark if available
1185
+ if self.watermark is not None:
1186
+ image = self.watermark.apply_watermark(image)
1187
+
1188
+ image = self.image_processor.postprocess(image, output_type=output_type)
1189
+
1190
+ # Offload all models
1191
+ self.maybe_free_model_hooks()
1192
+
1193
+ if not return_dict:
1194
+ return (image,)
1195
+
1196
+ return StableDiffusionXLPipelineOutput(images=image)
1197
+
1198
+
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ spaces
3
+ scipy
4
+ gradio==5.15.0
5
+ numpy==1.26.4
6
+ transformers
7
+ accelerate
8
+ diffusers
9
+ fastapi>=0.115.2
10
+ ligo-segments