|
|
|
|
|
|
|
import gradio as gr
|
|
from gradio_tokenizertextbox import TokenizerTextBox
|
|
import json
|
|
|
|
|
|
|
|
TOKENIZER_OPTIONS = {
|
|
"Xenova/clip-vit-large-patch14": "CLIP ViT-L/14",
|
|
"Xenova/gpt-4": "gpt-4 / gpt-3.5-turbo / text-embedding-ada-002",
|
|
"Xenova/text-davinci-003": "text-davinci-003 / text-davinci-002",
|
|
"Xenova/gpt-3": "gpt-3",
|
|
"Xenova/grok-1-tokenizer": "Grok-1",
|
|
"Xenova/claude-tokenizer": "Claude",
|
|
"Xenova/mistral-tokenizer-v3": "Mistral v3",
|
|
"Xenova/mistral-tokenizer-v1": "Mistral v1",
|
|
"Xenova/gemma-tokenizer": "Gemma",
|
|
"Xenova/llama-3-tokenizer": "Llama 3",
|
|
"Xenova/llama-tokenizer": "LLaMA / Llama 2",
|
|
"Xenova/c4ai-command-r-v01-tokenizer": "Cohere Command-R",
|
|
"Xenova/t5-small": "T5",
|
|
"Xenova/bert-base-cased": "bert-base-cased",
|
|
}
|
|
|
|
dropdown_choices = [
|
|
(display_name, model_name)
|
|
for model_name, display_name in TOKENIZER_OPTIONS.items()
|
|
]
|
|
|
|
def process_output(tokenization_data):
|
|
"""
|
|
This function receives the full dictionary from the component.
|
|
"""
|
|
if not tokenization_data:
|
|
return {"status": "Waiting for input..."}
|
|
return tokenization_data
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
gr.Markdown("# TokenizerTextBox Component Demo")
|
|
gr.Markdown("Component idea taken from the original example application on [Xenova Tokenizer Playground](https://github.com/huggingface/transformers.js-examples/tree/main/the-tokenizer-playground)")
|
|
|
|
|
|
with gr.Row():
|
|
model_selector = gr.Dropdown(
|
|
label="Select a Tokenizer",
|
|
choices=dropdown_choices,
|
|
value="Xenova/clip-vit-large-patch14",
|
|
)
|
|
|
|
display_mode_radio = gr.Radio(
|
|
["text", "token_ids", "hidden"],
|
|
label="Display Mode",
|
|
value="text"
|
|
)
|
|
|
|
|
|
with gr.Tabs():
|
|
|
|
with gr.TabItem("Standalone Mode"):
|
|
gr.Markdown("### In this mode, the component acts as its own interactive textbox.")
|
|
|
|
standalone_tokenizer = TokenizerTextBox(
|
|
label="Type your text here",
|
|
value="Gradio is an awesome tool for building ML demos!",
|
|
model="Xenova/clip-vit-large-patch14",
|
|
display_mode="text",
|
|
)
|
|
|
|
standalone_output = gr.JSON(label="Component Output")
|
|
standalone_tokenizer.change(process_output, standalone_tokenizer, standalone_output)
|
|
|
|
|
|
with gr.TabItem("Listener Mode"):
|
|
gr.Markdown("### In this mode, the component is a read-only visualizer for other text inputs.")
|
|
|
|
with gr.Row():
|
|
prompt_1 = gr.Textbox(label="Prompt Part 1", value="A photorealistic image of an astronaut")
|
|
prompt_2 = gr.Textbox(label="Prompt Part 2", value="riding a horse on Mars")
|
|
|
|
visualizer = TokenizerTextBox(
|
|
label="Concatenated Prompt Visualization",
|
|
hide_input=True,
|
|
model="Xenova/clip-vit-large-patch14",
|
|
display_mode="text",
|
|
)
|
|
|
|
visualizer_output = gr.JSON(label="Visualizer Component Output")
|
|
|
|
|
|
def update_visualizer_text(p1, p2):
|
|
concatenated_text = f"{p1}, {p2}"
|
|
|
|
|
|
return gr.update(value=concatenated_text)
|
|
|
|
|
|
prompt_1.change(update_visualizer_text, [prompt_1, prompt_2], visualizer)
|
|
prompt_2.change(update_visualizer_text, [prompt_1, prompt_2], visualizer)
|
|
|
|
|
|
visualizer.change(process_output, visualizer, visualizer_output)
|
|
|
|
|
|
demo.load(update_visualizer_text, [prompt_1, prompt_2], visualizer)
|
|
|
|
|
|
|
|
all_tokenizers = [standalone_tokenizer, visualizer]
|
|
|
|
model_selector.change(
|
|
fn=lambda model: [gr.update(model=model) for _ in all_tokenizers],
|
|
inputs=model_selector,
|
|
outputs=all_tokenizers
|
|
)
|
|
display_mode_radio.change(
|
|
fn=lambda mode: [gr.update(display_mode=mode) for _ in all_tokenizers],
|
|
inputs=display_mode_radio,
|
|
outputs=all_tokenizers
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
demo.launch() |