|
|
|
|
|
|
|
import gradio as gr |
|
from gradio_tokenizertextbox import TokenizerTextBox |
|
import json |
|
|
|
|
|
|
|
TOKENIZER_OPTIONS = { |
|
"Xenova/clip-vit-large-patch14": "CLIP ViT-L/14", |
|
"Xenova/gpt-4": "gpt-4 / gpt-3.5-turbo / text-embedding-ada-002", |
|
"Xenova/text-davinci-003": "text-davinci-003 / text-davinci-002", |
|
"Xenova/gpt-3": "gpt-3", |
|
"Xenova/grok-1-tokenizer": "Grok-1", |
|
"Xenova/claude-tokenizer": "Claude", |
|
"Xenova/mistral-tokenizer-v3": "Mistral v3", |
|
"Xenova/mistral-tokenizer-v1": "Mistral v1", |
|
"Xenova/gemma-tokenizer": "Gemma", |
|
"Xenova/llama-3-tokenizer": "Llama 3", |
|
"Xenova/llama-tokenizer": "LLaMA / Llama 2", |
|
"Xenova/c4ai-command-r-v01-tokenizer": "Cohere Command-R", |
|
"Xenova/t5-small": "T5", |
|
"Xenova/bert-base-cased": "bert-base-cased", |
|
} |
|
|
|
dropdown_choices = [ |
|
(display_name, model_name) |
|
for model_name, display_name in TOKENIZER_OPTIONS.items() |
|
] |
|
|
|
def process_output(tokenization_data): |
|
""" |
|
This function receives the full dictionary from the component. |
|
""" |
|
if not tokenization_data: |
|
return {"status": "Waiting for input..."} |
|
return tokenization_data |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
|
|
gr.Markdown("# TokenizerTextBox Component Demo") |
|
gr.Markdown("Component idea taken from the original example application on [Xenova Tokenizer Playground](https://github.com/huggingface/transformers.js-examples/tree/main/the-tokenizer-playground)") |
|
gr.Markdown("<span>💻 <a href='https://github.com/DEVAIEXP/gradio_component_tokenizertextbox'>Component GitHub Code</a></span>") |
|
|
|
|
|
with gr.Row(): |
|
model_selector = gr.Dropdown( |
|
label="Select a Tokenizer", |
|
choices=dropdown_choices, |
|
value="Xenova/clip-vit-large-patch14", |
|
) |
|
|
|
display_mode_radio = gr.Radio( |
|
["text", "token_ids", "hidden"], |
|
label="Display Mode", |
|
value="text" |
|
) |
|
|
|
|
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("Standalone Mode"): |
|
gr.Markdown("### In this mode, the component acts as its own interactive textbox.") |
|
|
|
standalone_tokenizer = TokenizerTextBox( |
|
label="Type your text here", |
|
value="Gradio is an awesome tool for building ML demos!", |
|
model="Xenova/clip-vit-large-patch14", |
|
display_mode="text", |
|
) |
|
|
|
standalone_output = gr.JSON(label="Component Output") |
|
standalone_tokenizer.change(process_output, standalone_tokenizer, standalone_output) |
|
|
|
|
|
with gr.TabItem("Listener Mode"): |
|
gr.Markdown("### In this mode, the component is a read-only visualizer for other text inputs.") |
|
|
|
with gr.Row(): |
|
prompt_1 = gr.Textbox(label="Prompt Part 1", value="A photorealistic image of an astronaut") |
|
prompt_2 = gr.Textbox(label="Prompt Part 2", value="riding a horse on Mars") |
|
|
|
visualizer = TokenizerTextBox( |
|
label="Concatenated Prompt Visualization", |
|
hide_input=True, |
|
model="Xenova/clip-vit-large-patch14", |
|
display_mode="text", |
|
) |
|
|
|
visualizer_output = gr.JSON(label="Visualizer Component Output") |
|
|
|
|
|
def update_visualizer_text(p1, p2): |
|
concatenated_text = f"{p1}, {p2}" |
|
|
|
|
|
return gr.update(value=concatenated_text) |
|
|
|
|
|
prompt_1.change(update_visualizer_text, [prompt_1, prompt_2], visualizer) |
|
prompt_2.change(update_visualizer_text, [prompt_1, prompt_2], visualizer) |
|
|
|
|
|
visualizer.change(process_output, visualizer, visualizer_output) |
|
|
|
|
|
demo.load(update_visualizer_text, [prompt_1, prompt_2], visualizer) |
|
|
|
|
|
|
|
all_tokenizers = [standalone_tokenizer, visualizer] |
|
|
|
model_selector.change( |
|
fn=lambda model: [gr.update(model=model) for _ in all_tokenizers], |
|
inputs=model_selector, |
|
outputs=all_tokenizers |
|
) |
|
display_mode_radio.change( |
|
fn=lambda mode: [gr.update(display_mode=mode) for _ in all_tokenizers], |
|
inputs=display_mode_radio, |
|
outputs=all_tokenizers |
|
) |
|
|
|
if __name__ == '__main__': |
|
demo.launch() |