elismasilva's picture
update git repo link
207ede3 verified
#
# demo/app.py
#
import gradio as gr
from gradio_tokenizertextbox import TokenizerTextBox
import json
# --- Data and Helper Functions ---
TOKENIZER_OPTIONS = {
"Xenova/clip-vit-large-patch14": "CLIP ViT-L/14",
"Xenova/gpt-4": "gpt-4 / gpt-3.5-turbo / text-embedding-ada-002",
"Xenova/text-davinci-003": "text-davinci-003 / text-davinci-002",
"Xenova/gpt-3": "gpt-3",
"Xenova/grok-1-tokenizer": "Grok-1",
"Xenova/claude-tokenizer": "Claude",
"Xenova/mistral-tokenizer-v3": "Mistral v3",
"Xenova/mistral-tokenizer-v1": "Mistral v1",
"Xenova/gemma-tokenizer": "Gemma",
"Xenova/llama-3-tokenizer": "Llama 3",
"Xenova/llama-tokenizer": "LLaMA / Llama 2",
"Xenova/c4ai-command-r-v01-tokenizer": "Cohere Command-R",
"Xenova/t5-small": "T5",
"Xenova/bert-base-cased": "bert-base-cased",
}
dropdown_choices = [
(display_name, model_name)
for model_name, display_name in TOKENIZER_OPTIONS.items()
]
def process_output(tokenization_data):
"""
This function receives the full dictionary from the component.
"""
if not tokenization_data:
return {"status": "Waiting for input..."}
return tokenization_data
# --- Gradio Application ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# --- Header and Information ---
gr.Markdown("# TokenizerTextBox Component Demo")
gr.Markdown("Component idea taken from the original example application on [Xenova Tokenizer Playground](https://github.com/huggingface/transformers.js-examples/tree/main/the-tokenizer-playground)")
gr.Markdown("<span>💻 <a href='https://github.com/DEVAIEXP/gradio_component_tokenizertextbox'>Component GitHub Code</a></span>")
# --- Global Controls (affect both tabs) ---
with gr.Row():
model_selector = gr.Dropdown(
label="Select a Tokenizer",
choices=dropdown_choices,
value="Xenova/clip-vit-large-patch14",
)
display_mode_radio = gr.Radio(
["text", "token_ids", "hidden"],
label="Display Mode",
value="text"
)
# --- Tabbed Interface for Different Modes ---
with gr.Tabs():
# --- Tab 1: Standalone Mode ---
with gr.TabItem("Standalone Mode"):
gr.Markdown("### In this mode, the component acts as its own interactive textbox.")
standalone_tokenizer = TokenizerTextBox(
label="Type your text here",
value="Gradio is an awesome tool for building ML demos!",
model="Xenova/clip-vit-large-patch14",
display_mode="text",
)
standalone_output = gr.JSON(label="Component Output")
standalone_tokenizer.change(process_output, standalone_tokenizer, standalone_output)
# --- Tab 2: Listener ("Push") Mode ---
with gr.TabItem("Listener Mode"):
gr.Markdown("### In this mode, the component is a read-only visualizer for other text inputs.")
with gr.Row():
prompt_1 = gr.Textbox(label="Prompt Part 1", value="A photorealistic image of an astronaut")
prompt_2 = gr.Textbox(label="Prompt Part 2", value="riding a horse on Mars")
visualizer = TokenizerTextBox(
label="Concatenated Prompt Visualization",
hide_input=True, # Hides the internal textbox
model="Xenova/clip-vit-large-patch14",
display_mode="text",
)
visualizer_output = gr.JSON(label="Visualizer Component Output")
# --- "Push" Logic ---
def update_visualizer_text(p1, p2):
concatenated_text = f"{p1}, {p2}"
# Return a new value for the visualizer.
# The postprocess method will correctly handle this string.
return gr.update(value=concatenated_text)
# Listen for changes on the source textboxes
prompt_1.change(update_visualizer_text, [prompt_1, prompt_2], visualizer)
prompt_2.change(update_visualizer_text, [prompt_1, prompt_2], visualizer)
# Also connect the visualizer to its own JSON output
visualizer.change(process_output, visualizer, visualizer_output)
# Run once on load to show the initial state
demo.load(update_visualizer_text, [prompt_1, prompt_2], visualizer)
# --- Link Global Controls to Both Components ---
# Create a list of all TokenizerTextBox components that need to be updated
all_tokenizers = [standalone_tokenizer, visualizer]
model_selector.change(
fn=lambda model: [gr.update(model=model) for _ in all_tokenizers],
inputs=model_selector,
outputs=all_tokenizers
)
display_mode_radio.change(
fn=lambda mode: [gr.update(display_mode=mode) for _ in all_tokenizers],
inputs=display_mode_radio,
outputs=all_tokenizers
)
if __name__ == '__main__':
demo.launch()