Upload 4 files
Browse files- Dockerfile +9 -0
- app.py +81 -0
- database.npz +3 -0
- weights.pt +3 -0
Dockerfile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
WORKDIR /usr/src/app
|
4 |
+
COPY . .
|
5 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
6 |
+
EXPOSE 7860
|
7 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
8 |
+
|
9 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.transforms as T
|
6 |
+
import timm
|
7 |
+
from PIL import Image
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# hyperparameters
|
11 |
+
device = torch.device("cpu")
|
12 |
+
input_width, input_height = 224, 224
|
13 |
+
|
14 |
+
# load ear detector
|
15 |
+
ear_detector = torch.hub.load("ultralytics/yolov5", "custom", path=os.path.join(os.path.dirname(__file__), "weights", "ear_YOLOv5_n.pt"))
|
16 |
+
ear_detector.to(device)
|
17 |
+
|
18 |
+
# initialize model
|
19 |
+
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-T-224", pretrained=True, num_classes=0)
|
20 |
+
|
21 |
+
# load state dict containing miscellaneous state or just the model weights
|
22 |
+
state_dict = torch.load("weights.pt", map_location=device)
|
23 |
+
if "optimizer" in state_dict:
|
24 |
+
model.load_state_dict(state_dict["model"])
|
25 |
+
else:
|
26 |
+
model.load_state_dict(state_dict)
|
27 |
+
|
28 |
+
model.to(device)
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
|
32 |
+
transforms = T.Compose([
|
33 |
+
T.Resize([input_height, input_width]),
|
34 |
+
T.ToTensor(),
|
35 |
+
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
36 |
+
])
|
37 |
+
|
38 |
+
database = np.load("database.npz", allow_pickle=True)
|
39 |
+
features, identities = database["features"], database["identities"]
|
40 |
+
features = torch.from_numpy(features).to(device)
|
41 |
+
|
42 |
+
|
43 |
+
def strings2ints(a):
|
44 |
+
idx = {v: i for i, v in enumerate(set([*a]))}
|
45 |
+
return torch.Tensor([idx[e] for e in a]).to(dtype=torch.int64), {v: k for k, v in idx.items()}
|
46 |
+
|
47 |
+
def predict(image):
|
48 |
+
with torch.inference_mode():
|
49 |
+
|
50 |
+
output = ear_detector(image)
|
51 |
+
n_preds = len(output.pred[0].tolist())
|
52 |
+
if n_preds == 0:
|
53 |
+
return "Error: Unable to detect elephant ears"
|
54 |
+
|
55 |
+
xyxy = output.xyxy[0].tolist()
|
56 |
+
|
57 |
+
noncenterness = [(image.width - (xyxy[i][0] + xyxy[i][2] / 2)) ** 2 + (image.height - (xyxy[i][1] + xyxy[i][3] / 2)) ** 2 for i in range(n_preds)]
|
58 |
+
centermost_idx = np.argmin(noncenterness)
|
59 |
+
|
60 |
+
image = image.crop(tuple(output.xyxy[0].tolist()[centermost_idx][:4]))
|
61 |
+
|
62 |
+
if output.pred[0].tolist()[centermost_idx][-1] >= 0.5:
|
63 |
+
image = image.transpose(Image.FLIP_LEFT_RIGHT)
|
64 |
+
|
65 |
+
image = transforms(image).unsqueeze(0).to(device)
|
66 |
+
|
67 |
+
embedding = model(image)
|
68 |
+
similarity = torch.matmul(F.normalize(embedding), F.normalize(features).T)
|
69 |
+
|
70 |
+
similarity_sorted_idx = torch.argsort(similarity[0], descending=True).cpu().numpy().reshape(-1)
|
71 |
+
candidates = identities.reshape(-1)[similarity_sorted_idx].tolist()
|
72 |
+
candidates_similarity = similarity[0, similarity_sorted_idx].tolist()
|
73 |
+
|
74 |
+
return f"We are about {max(0, candidates_similarity[0]):.0%} confident that this elephant is {'_'.join(candidates[0].split('_')[:-1])}"
|
75 |
+
|
76 |
+
|
77 |
+
gr.Interface(
|
78 |
+
fn=predict,
|
79 |
+
inputs=gr.Image(type="pil"),
|
80 |
+
outputs=gr.Label(),
|
81 |
+
).launch(share=True)
|
database.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1985b902ee2826f7215bced0c330c0a6b0bda13559779071cfb34a9ee0342c03
|
3 |
+
size 23072727
|
weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da82dcf2c50dec71cafefd803cc8d078cdcf9226cbf571b7adde0dd4b14c6e7a
|
3 |
+
size 224710970
|