submission-template / tasks /lib /spectrogram.py
Arjea's picture
To compute spectrograms and resample audio wave
848403b
from math import log2
import librosa
import numpy as np
def _get_n_fft(freq_res_hz: int, sr: int) -> int:
"""
:freq_res: frequency resolution in Hz = sample_rate / n_fft
how good you can differentiate between frequency components
which are at least ‘this’ amount far apart.
:sr: sampling_rate
The n_fft specifies the FFT length, i.e. the number of bins.
Low frequencies are more distinguishable when n_fft is higher.
For computational reason n_fft is a power of 2 (2, 4, 8, 16, ...)
"""
return 2 ** round(log2(sr / freq_res_hz))
def get_spectrogram_dB(
raw_wave: np.ndarray, freq_res_hz: int = 5, sr: int = 12000
) -> np.ndarray:
spectrogram_complex = librosa.stft(y=raw_wave, n_fft=_get_n_fft(freq_res_hz, sr))
spectrogram_amplitude = np.abs(spectrogram_complex)
return librosa.amplitude_to_db(spectrogram_amplitude, ref=np.max)
def get_mel_spectrogram_dB(
raw_wave: np.ndarray, freq_res_hz: int = 5, sr: int = 12000
) -> np.ndarray:
spectrogram_complex = librosa.stft(y=raw_wave, n_fft=_get_n_fft(freq_res_hz, sr))
spectrogram_amplitude = np.abs(spectrogram_complex)
mel_scale_sepctrogram = librosa.feature.melspectrogram(
S=spectrogram_amplitude, sr=sr
)
return librosa.amplitude_to_db(mel_scale_sepctrogram, ref=np.max)