Spaces:
Sleeping
Sleeping
from math import log2 | |
import librosa | |
import numpy as np | |
def _get_n_fft(freq_res_hz: int, sr: int) -> int: | |
""" | |
:freq_res: frequency resolution in Hz = sample_rate / n_fft | |
how good you can differentiate between frequency components | |
which are at least ‘this’ amount far apart. | |
:sr: sampling_rate | |
The n_fft specifies the FFT length, i.e. the number of bins. | |
Low frequencies are more distinguishable when n_fft is higher. | |
For computational reason n_fft is a power of 2 (2, 4, 8, 16, ...) | |
""" | |
return 2 ** round(log2(sr / freq_res_hz)) | |
def get_spectrogram_dB( | |
raw_wave: np.ndarray, freq_res_hz: int = 5, sr: int = 12000 | |
) -> np.ndarray: | |
spectrogram_complex = librosa.stft(y=raw_wave, n_fft=_get_n_fft(freq_res_hz, sr)) | |
spectrogram_amplitude = np.abs(spectrogram_complex) | |
return librosa.amplitude_to_db(spectrogram_amplitude, ref=np.max) | |
def get_mel_spectrogram_dB( | |
raw_wave: np.ndarray, freq_res_hz: int = 5, sr: int = 12000 | |
) -> np.ndarray: | |
spectrogram_complex = librosa.stft(y=raw_wave, n_fft=_get_n_fft(freq_res_hz, sr)) | |
spectrogram_amplitude = np.abs(spectrogram_complex) | |
mel_scale_sepctrogram = librosa.feature.melspectrogram( | |
S=spectrogram_amplitude, sr=sr | |
) | |
return librosa.amplitude_to_db(mel_scale_sepctrogram, ref=np.max) | |