File size: 6,516 Bytes
998e8ac
 
 
 
 
 
 
 
 
 
 
 
04e024e
998e8ac
0014ea1
998e8ac
 
 
 
04e024e
998e8ac
 
04e024e
 
998e8ac
04e024e
998e8ac
 
 
 
 
 
 
 
 
 
 
 
 
0014ea1
 
 
 
 
 
 
 
 
 
998e8ac
 
 
 
 
 
 
 
 
04e024e
998e8ac
0014ea1
998e8ac
 
 
 
 
 
 
 
 
 
 
04e024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0014ea1
 
 
 
 
 
04e024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0014ea1
 
998e8ac
 
 
 
 
 
 
 
 
0014ea1
998e8ac
 
 
 
 
 
 
 
 
 
0014ea1
998e8ac
0014ea1
998e8ac
 
 
 
 
 
 
 
 
04e024e
 
998e8ac
 
 
 
 
 
 
 
 
 
 
0014ea1
998e8ac
0014ea1
998e8ac
 
 
 
 
 
 
 
0014ea1
998e8ac
0014ea1
998e8ac
 
 
 
 
 
 
 
0014ea1
998e8ac
0014ea1
998e8ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0014ea1
 
 
 
 
 
 
998e8ac
 
 
 
0014ea1
998e8ac
 
 
 
 
 
 
 
 
 
 
 
 
0014ea1
998e8ac
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Text task notebook template\n",
    "## Loading the necessary libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fastapi import APIRouter\n",
    "from datetime import datetime\n",
    "from datasets import load_dataset\n",
    "import librosa\n",
    "from sklearn.metrics import accuracy_score\n",
    "import random\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import sys\n",
    "import json\n",
    "sys.path.append('../tasks')\n",
    "\n",
    "from utils.evaluation import AudioEvaluationRequest\n",
    "from utils.emissions import tracker, clean_emissions_data, get_space_info\n",
    "\n",
    "\n",
    "# Define the label mapping\n",
    "LABEL_MAPPING = {\n",
    "    \"chainsaw\": 0,\n",
    "    \"environment\": 1\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import login\n",
    "login()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loading the datasets and splitting them"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "request = AudioEvaluationRequest()\n",
    "\n",
    "# Load and prepare the dataset\n",
    "dataset = load_dataset(request.dataset_name)\n",
    "\n",
    "# Split dataset\n",
    "train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
    "test_dataset = train_test[\"test\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Analysis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "train = dataset[\"train\"]\n",
    "test = dataset['test']\n",
    "\n",
    "train_df = pd.DataFrame(train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_df[\"path\"] = train_df[\"audio\"].apply(lambda x: x['path'])\n",
    "train_df[\"array\"] = train_df[\"audio\"].apply(lambda x: x['array'])\n",
    "train_df[\"sampling_rate\"] = train_df[\"audio\"].apply(lambda x: x['sampling_rate'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Target sampling rate\n",
    "target_sr = 12000\n",
    "\n",
    "# Function to resample the audio array\n",
    "def resample_audio(array, orig_sr, target_sr):\n",
    "    array = np.array(array)  # Ensure it's a numpy array\n",
    "    if orig_sr != target_sr:\n",
    "        array = librosa.resample(array, orig_sr=orig_sr, target_sr=target_sr)\n",
    "    return array\n",
    "\n",
    "# Apply resampling to each row\n",
    "train_df[\"resampled_array\"] = train_df.apply(\n",
    "    lambda row: resample_audio(row[\"array\"], row[\"sampling_rate\"], target_sr), axis=1\n",
    ")\n",
    "\n",
    "# Update the sampling rate column to reflect the target rate\n",
    "train_df[\"sampling_rate\"] = target_sr\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_df.sampling_rate.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Random Baseline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Start tracking emissions\n",
    "tracker.start()\n",
    "tracker.start_task(\"inference\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "#--------------------------------------------------------------------------------------------\n",
    "# YOUR MODEL INFERENCE CODE HERE\n",
    "# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
    "#--------------------------------------------------------------------------------------------   \n",
    "\n",
    "# Make random predictions (placeholder for actual model inference)\n",
    "true_labels = test_dataset[\"label\"]\n",
    "\n",
    "\n",
    "predictions = [random.randint(0, 1) for _ in range(len(true_labels))]\n",
    "\n",
    "predictions\n",
    "\n",
    "#--------------------------------------------------------------------------------------------\n",
    "# YOUR MODEL INFERENCE STOPS HERE\n",
    "#--------------------------------------------------------------------------------------------   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Stop tracking emissions\n",
    "emissions_data = tracker.stop_task()\n",
    "emissions_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Calculate accuracy\n",
    "accuracy = accuracy_score(true_labels, predictions)\n",
    "accuracy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Prepare results dictionary\n",
    "results = {\n",
    "    \"submission_timestamp\": datetime.now().isoformat(),\n",
    "    \"accuracy\": float(accuracy),\n",
    "    \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
    "    \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
    "    \"emissions_data\": clean_emissions_data(emissions_data),\n",
    "    \"dataset_config\": {\n",
    "        \"dataset_name\": request.dataset_name,\n",
    "        \"test_size\": request.test_size,\n",
    "        \"test_seed\": request.test_seed\n",
    "    }\n",
    "}\n",
    "\n",
    "results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}