Spaces:
Sleeping
Sleeping
Commit
·
3d2f665
1
Parent(s):
b4e9c5b
Delete HROM_Trainer.py
Browse files- HROM_Trainer.py +0 -384
HROM_Trainer.py
DELETED
@@ -1,384 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.utils.data import Dataset, DataLoader
|
4 |
-
from datasets import load_dataset
|
5 |
-
from tokenizers import Tokenizer, models, trainers, pre_tokenizers, processors, decoders
|
6 |
-
import math
|
7 |
-
import os
|
8 |
-
import re
|
9 |
-
from datetime import datetime
|
10 |
-
from contextlib import nullcontext
|
11 |
-
|
12 |
-
# Configuration
|
13 |
-
CONFIG = {
|
14 |
-
"dim": 512,
|
15 |
-
"n_layers": 6,
|
16 |
-
"n_heads": 8,
|
17 |
-
"ff_dim": 2048,
|
18 |
-
"dropout": 0.1,
|
19 |
-
"max_seq_len": 1024,
|
20 |
-
"batch_size": 32,
|
21 |
-
"checkpoint_interval": 1000,
|
22 |
-
"debug_interval": 500,
|
23 |
-
"dataset": "daily_dialog",
|
24 |
-
"vocab_size": 32000,
|
25 |
-
"tokenizer_train_samples": 100000,
|
26 |
-
"learning_rate": 1e-4, # Lowered learning rate
|
27 |
-
"max_turns": 6,
|
28 |
-
"max_checkpoints": 5,
|
29 |
-
"num_epochs": 100, # Increased number of epochs
|
30 |
-
"grad_accum_steps": 4 # Gradient accumulation steps
|
31 |
-
}
|
32 |
-
|
33 |
-
class RotaryEmbedding(nn.Module):
|
34 |
-
def __init__(self, dim):
|
35 |
-
super().__init__()
|
36 |
-
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
37 |
-
self.register_buffer("inv_freq", inv_freq)
|
38 |
-
|
39 |
-
def forward(self, seq_len):
|
40 |
-
t = torch.arange(seq_len, device=self.inv_freq.device).type_as(self.inv_freq)
|
41 |
-
freqs = torch.einsum("i, j -> i j", t, self.inv_freq)
|
42 |
-
return torch.cat((freqs, freqs), dim=-1)
|
43 |
-
|
44 |
-
def rotate_half(x):
|
45 |
-
x1, x2 = x.chunk(2, dim=-1)
|
46 |
-
return torch.cat((-x2, x1), dim=-1)
|
47 |
-
|
48 |
-
def apply_rotary_pos_emb(pos, t):
|
49 |
-
pos = pos.unsqueeze(0).unsqueeze(1)
|
50 |
-
return (t * pos.cos()) + (rotate_half(t) * pos.sin())
|
51 |
-
|
52 |
-
class SwiGLU(nn.Module):
|
53 |
-
def forward(self, x):
|
54 |
-
x, gate = x.chunk(2, dim=-1)
|
55 |
-
return x * torch.sigmoid(gate)
|
56 |
-
|
57 |
-
class HROMAttention(nn.Module):
|
58 |
-
def __init__(self):
|
59 |
-
super().__init__()
|
60 |
-
self.dim = CONFIG["dim"]
|
61 |
-
self.n_heads = CONFIG["n_heads"]
|
62 |
-
self.head_dim = self.dim // self.n_heads
|
63 |
-
self.qkv = nn.Linear(self.dim, 3 * self.dim)
|
64 |
-
self.proj = nn.Linear(self.dim, self.dim)
|
65 |
-
self.rotary = RotaryEmbedding(self.head_dim)
|
66 |
-
self.dropout = nn.Dropout(CONFIG["dropout"])
|
67 |
-
|
68 |
-
def forward(self, x, mask=None):
|
69 |
-
B, T, _ = x.shape
|
70 |
-
qkv = self.qkv(x).reshape(B, T, 3, self.n_heads, self.head_dim)
|
71 |
-
q, k, v = qkv.unbind(2)
|
72 |
-
q = q.transpose(1, 2)
|
73 |
-
k = k.transpose(1, 2)
|
74 |
-
v = v.transpose(1, 2)
|
75 |
-
pos = self.rotary(T)
|
76 |
-
q = apply_rotary_pos_emb(pos, q)
|
77 |
-
k = apply_rotary_pos_emb(pos, k)
|
78 |
-
attn = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
|
79 |
-
if mask is not None:
|
80 |
-
mask = mask.unsqueeze(1)
|
81 |
-
attn = attn + mask
|
82 |
-
attn = torch.softmax(attn, dim=-1)
|
83 |
-
attn = self.dropout(attn)
|
84 |
-
out = attn @ v
|
85 |
-
out = out.transpose(1, 2).reshape(B, T, self.dim)
|
86 |
-
return self.proj(out)
|
87 |
-
|
88 |
-
class HROMBlock(nn.Module):
|
89 |
-
def __init__(self):
|
90 |
-
super().__init__()
|
91 |
-
self.attn = HROMAttention()
|
92 |
-
self.ff = nn.Sequential(
|
93 |
-
nn.Linear(CONFIG["dim"], 2 * CONFIG["ff_dim"]),
|
94 |
-
SwiGLU(),
|
95 |
-
nn.Linear(CONFIG["ff_dim"], CONFIG["dim"])
|
96 |
-
)
|
97 |
-
self.norm1 = nn.LayerNorm(CONFIG["dim"])
|
98 |
-
self.norm2 = nn.LayerNorm(CONFIG["dim"])
|
99 |
-
self.dropout = nn.Dropout(CONFIG["dropout"])
|
100 |
-
|
101 |
-
def forward(self, x, mask=None):
|
102 |
-
x = x + self.dropout(self.attn(self.norm1(x), mask))
|
103 |
-
x = x + self.dropout(self.ff(self.norm2(x)))
|
104 |
-
return x
|
105 |
-
|
106 |
-
class HROM(nn.Module):
|
107 |
-
def __init__(self):
|
108 |
-
super().__init__()
|
109 |
-
self.embed = nn.Embedding(CONFIG["vocab_size"], CONFIG["dim"])
|
110 |
-
self.blocks = nn.ModuleList([HROMBlock() for _ in range(CONFIG["n_layers"])])
|
111 |
-
self.norm = nn.LayerNorm(CONFIG["dim"])
|
112 |
-
self.head = nn.Linear(CONFIG["dim"], CONFIG["vocab_size"])
|
113 |
-
self.apply(self._init_weights)
|
114 |
-
|
115 |
-
def _init_weights(self, module):
|
116 |
-
if isinstance(module, nn.Linear):
|
117 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
118 |
-
if module.bias is not None:
|
119 |
-
torch.nn.init.zeros_(module.bias)
|
120 |
-
|
121 |
-
def forward(self, x, attention_mask=None):
|
122 |
-
x = self.embed(x)
|
123 |
-
if attention_mask is not None:
|
124 |
-
B, T = attention_mask.shape
|
125 |
-
causal_mask = torch.triu(torch.ones(T, T) * float('-inf'), diagonal=1)
|
126 |
-
causal_mask = causal_mask.to(x.device)
|
127 |
-
pad_mask = attention_mask.unsqueeze(1).unsqueeze(2).to(dtype=torch.float32)
|
128 |
-
pad_mask = (1.0 - pad_mask) * torch.finfo(torch.float32).min
|
129 |
-
mask = causal_mask + pad_mask.squeeze(1)
|
130 |
-
else:
|
131 |
-
B, T = x.shape[:2]
|
132 |
-
mask = torch.triu(torch.ones(T, T) * float('-inf'), diagonal=1)
|
133 |
-
mask = mask.to(x.device)
|
134 |
-
mask = mask.unsqueeze(0).expand(B, -1, -1)
|
135 |
-
for block in self.blocks:
|
136 |
-
x = block(x, mask)
|
137 |
-
return self.head(self.norm(x))
|
138 |
-
|
139 |
-
class TokenizerTrainer:
|
140 |
-
def __init__(self):
|
141 |
-
self.tokenizer = Tokenizer(models.BPE())
|
142 |
-
self.tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
|
143 |
-
self.tokenizer.decoder = decoders.ByteLevel()
|
144 |
-
self.special_tokens = ["<pad>", "<s>", "</s>", "<unk>", "<user>", "<assistant>"]
|
145 |
-
|
146 |
-
def train(self, dataset_name):
|
147 |
-
dataset = load_dataset(dataset_name, split=f"train[:{CONFIG['tokenizer_train_samples']}]")
|
148 |
-
text_samples = []
|
149 |
-
for entry in dataset:
|
150 |
-
if "dialog" in entry:
|
151 |
-
for i, utterance in enumerate(entry["dialog"][:CONFIG["max_turns"]]):
|
152 |
-
role = "<user>" if i % 2 == 0 else "<assistant>"
|
153 |
-
text_samples.append(f"{role} {utterance}")
|
154 |
-
else:
|
155 |
-
text_samples.append(self._clean_text(entry.get("text", "")))
|
156 |
-
trainer = trainers.BpeTrainer(
|
157 |
-
vocab_size=CONFIG["vocab_size"],
|
158 |
-
special_tokens=self.special_tokens,
|
159 |
-
min_frequency=2,
|
160 |
-
show_progress=True
|
161 |
-
)
|
162 |
-
self.tokenizer.train_from_iterator(text_samples, trainer=trainer, length=len(text_samples))
|
163 |
-
self.tokenizer.post_processor = processors.TemplateProcessing(
|
164 |
-
single="$A </s>",
|
165 |
-
pair="$A $B </s>",
|
166 |
-
special_tokens=[("</s>", self.tokenizer.token_to_id("</s>"))],
|
167 |
-
)
|
168 |
-
os.makedirs("tokenizer", exist_ok=True)
|
169 |
-
self.tokenizer.save("tokenizer/hrom_tokenizer.json")
|
170 |
-
|
171 |
-
def _clean_text(self, text):
|
172 |
-
text = re.sub(r'[^\w\s.,!?\'\-:;<>]', '', text)
|
173 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
174 |
-
return text
|
175 |
-
|
176 |
-
class ChatDataset(Dataset):
|
177 |
-
def __init__(self, tokenizer):
|
178 |
-
full_dataset = load_dataset(CONFIG["dataset"], split="train")
|
179 |
-
num_samples = min(len(full_dataset), CONFIG["tokenizer_train_samples"])
|
180 |
-
self.dataset = full_dataset.shuffle(seed=42).select(range(num_samples))
|
181 |
-
self.tokenizer = tokenizer
|
182 |
-
self.max_length = CONFIG["max_seq_len"]
|
183 |
-
self.turn_sep = self.tokenizer.token_to_id("</s>")
|
184 |
-
|
185 |
-
def __len__(self):
|
186 |
-
return len(self.dataset)
|
187 |
-
|
188 |
-
def __getitem__(self, idx):
|
189 |
-
entry = self.dataset[idx]
|
190 |
-
formatted = []
|
191 |
-
if "dialog" in entry:
|
192 |
-
dialog = entry["dialog"][:CONFIG["max_turns"]]
|
193 |
-
for i, utterance in enumerate(dialog):
|
194 |
-
role_token = "<user>" if i % 2 == 0 else "<assistant>"
|
195 |
-
formatted.extend([
|
196 |
-
self.tokenizer.token_to_id(role_token),
|
197 |
-
*self.tokenizer.encode(utterance).ids,
|
198 |
-
self.turn_sep
|
199 |
-
])
|
200 |
-
else:
|
201 |
-
text = entry.get("text", "")
|
202 |
-
formatted.extend([
|
203 |
-
self.tokenizer.token_to_id("<user>"),
|
204 |
-
*self.tokenizer.encode(text).ids,
|
205 |
-
self.turn_sep
|
206 |
-
])
|
207 |
-
formatted = formatted[:self.max_length-2]
|
208 |
-
formatted = [self.tokenizer.token_to_id("<s>"), *formatted, self.tokenizer.token_to_id("</s>")]
|
209 |
-
return {
|
210 |
-
"input_ids": formatted[:-1],
|
211 |
-
"labels": formatted[1:]
|
212 |
-
}
|
213 |
-
|
214 |
-
@staticmethod
|
215 |
-
def collate_fn(batch):
|
216 |
-
max_len = max(len(item["input_ids"]) for item in batch)
|
217 |
-
pad_id = Tokenizer.from_file("tokenizer/hrom_tokenizer.json").token_to_id("<pad>")
|
218 |
-
inputs, labels, masks = [], [], []
|
219 |
-
for item in batch:
|
220 |
-
pad_len = max_len - len(item["input_ids"])
|
221 |
-
inputs.append(item["input_ids"] + [pad_id] * pad_len)
|
222 |
-
labels.append(item["labels"] + [pad_id] * pad_len)
|
223 |
-
masks.append([1] * len(item["input_ids"]) + [0] * pad_len)
|
224 |
-
return {
|
225 |
-
"input_ids": torch.tensor(inputs),
|
226 |
-
"labels": torch.tensor(labels),
|
227 |
-
"attention_mask": torch.tensor(masks)
|
228 |
-
}
|
229 |
-
|
230 |
-
class HROMTrainer:
|
231 |
-
def __init__(self, model, tokenizer):
|
232 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
233 |
-
self.model = model.to(self.device)
|
234 |
-
if self.device.type == "cuda":
|
235 |
-
self.scaler = torch.cuda.amp.GradScaler()
|
236 |
-
else:
|
237 |
-
self.scaler = None
|
238 |
-
self.optimizer = torch.optim.AdamW(
|
239 |
-
self.model.parameters(),
|
240 |
-
lr=CONFIG["learning_rate"],
|
241 |
-
fused=True if self.device.type == "cuda" else False
|
242 |
-
)
|
243 |
-
self.tokenizer = tokenizer
|
244 |
-
|
245 |
-
def train_step(self, batch):
|
246 |
-
autocast = torch.cuda.amp.autocast if self.device.type == "cuda" else nullcontext
|
247 |
-
with autocast():
|
248 |
-
outputs = self.model(
|
249 |
-
batch["input_ids"].to(self.device),
|
250 |
-
attention_mask=batch["attention_mask"].to(self.device)
|
251 |
-
)
|
252 |
-
original_loss = nn.CrossEntropyLoss(ignore_index=self.tokenizer.token_to_id("<pad>"))(
|
253 |
-
outputs.view(-1, CONFIG["vocab_size"]),
|
254 |
-
batch["labels"].view(-1).to(self.device)
|
255 |
-
)
|
256 |
-
scaled_loss = original_loss / CONFIG["grad_accum_steps"]
|
257 |
-
|
258 |
-
if self.scaler is not None:
|
259 |
-
self.scaler.scale(scaled_loss).backward()
|
260 |
-
else:
|
261 |
-
scaled_loss.backward()
|
262 |
-
|
263 |
-
return original_loss.item()
|
264 |
-
|
265 |
-
def clip_and_step(self):
|
266 |
-
if self.scaler is not None:
|
267 |
-
self.scaler.unscale_(self.optimizer)
|
268 |
-
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
269 |
-
|
270 |
-
if self.scaler is not None:
|
271 |
-
self.scaler.step(self.optimizer)
|
272 |
-
self.scaler.update()
|
273 |
-
else:
|
274 |
-
self.optimizer.step()
|
275 |
-
|
276 |
-
self.optimizer.zero_grad()
|
277 |
-
|
278 |
-
class SafetyManager:
|
279 |
-
def __init__(self, model, tokenizer):
|
280 |
-
self.model = model
|
281 |
-
self.tokenizer = tokenizer
|
282 |
-
self.bad_words = ["hate", "kill", "harm"]
|
283 |
-
self.bad_word_ids = [tokenizer.encode(w).ids for w in self.bad_words]
|
284 |
-
|
285 |
-
def content_filter(self, text):
|
286 |
-
tokens = self.tokenizer.encode(text).ids
|
287 |
-
for bad_ids in self.bad_word_ids:
|
288 |
-
if any(tokens[i:i+len(bad_ids)] == bad_ids for i in range(len(tokens))):
|
289 |
-
return False
|
290 |
-
return True
|
291 |
-
|
292 |
-
def generate_safely(self, prompt, max_length=50):
|
293 |
-
input_ids = self.tokenizer.encode(prompt).ids
|
294 |
-
device = next(self.model.parameters()).device
|
295 |
-
for _ in range(max_length):
|
296 |
-
with torch.no_grad():
|
297 |
-
logits = self.model(torch.tensor([input_ids]).to(device))
|
298 |
-
next_token = logits.argmax(-1)[:, -1].item()
|
299 |
-
if next_token == self.tokenizer.token_to_id("</s>"):
|
300 |
-
break
|
301 |
-
generated = self.tokenizer.decode(input_ids + [next_token])
|
302 |
-
if not self.content_filter(generated):
|
303 |
-
break
|
304 |
-
input_ids.append(next_token)
|
305 |
-
return self.tokenizer.decode(input_ids)
|
306 |
-
|
307 |
-
def debug_generation(self, prompt="Hello!"):
|
308 |
-
print(f"\nSafety Check Generation:")
|
309 |
-
response = self.generate_safely(prompt)
|
310 |
-
print(f"Prompt: {prompt}\nResponse: {response}")
|
311 |
-
|
312 |
-
class CheckpointManager:
|
313 |
-
def __init__(self):
|
314 |
-
self.checkpoint_dir = "checkpoints"
|
315 |
-
os.makedirs(self.checkpoint_dir, exist_ok=True)
|
316 |
-
|
317 |
-
def save(self, model, optimizer, step):
|
318 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
319 |
-
path = f"{self.checkpoint_dir}/hrom_{timestamp}_step{step}.pt"
|
320 |
-
torch.save({
|
321 |
-
"model": model.state_dict(),
|
322 |
-
"optimizer": optimizer.state_dict(),
|
323 |
-
"step": step,
|
324 |
-
"config": CONFIG
|
325 |
-
}, path)
|
326 |
-
self._cleanup_old_checkpoints()
|
327 |
-
|
328 |
-
def _cleanup_old_checkpoints(self):
|
329 |
-
checkpoints = sorted(os.listdir(self.checkpoint_dir),
|
330 |
-
key=lambda x: os.path.getmtime(os.path.join(self.checkpoint_dir, x)))
|
331 |
-
while len(checkpoints) > CONFIG["max_checkpoints"]:
|
332 |
-
os.remove(os.path.join(self.checkpoint_dir, checkpoints[0]))
|
333 |
-
checkpoints = checkpoints[1:]
|
334 |
-
|
335 |
-
def train():
|
336 |
-
checkpoint_manager = CheckpointManager()
|
337 |
-
if not os.path.exists("tokenizer/hrom_tokenizer.json"):
|
338 |
-
print("Training tokenizer...")
|
339 |
-
tokenizer_trainer = TokenizerTrainer()
|
340 |
-
tokenizer_trainer.train(CONFIG["dataset"])
|
341 |
-
|
342 |
-
tokenizer = Tokenizer.from_file("tokenizer/hrom_tokenizer.json")
|
343 |
-
model = HROM()
|
344 |
-
print("Downloading and caching the dataset...")
|
345 |
-
_ = load_dataset(CONFIG["dataset"], split="train", download_mode="reuse_cache_if_exists")
|
346 |
-
|
347 |
-
dataset = ChatDataset(tokenizer)
|
348 |
-
dataloader = DataLoader(
|
349 |
-
dataset,
|
350 |
-
batch_size=CONFIG["batch_size"],
|
351 |
-
collate_fn=ChatDataset.collate_fn
|
352 |
-
)
|
353 |
-
|
354 |
-
trainer_obj = HROMTrainer(model, tokenizer)
|
355 |
-
safety = SafetyManager(model, tokenizer)
|
356 |
-
|
357 |
-
step = 0
|
358 |
-
optimizer_step = 0
|
359 |
-
total_loss = 0.0
|
360 |
-
model.train()
|
361 |
-
|
362 |
-
for epoch in range(CONFIG["num_epochs"]):
|
363 |
-
for batch in dataloader:
|
364 |
-
loss = trainer_obj.train_step(batch)
|
365 |
-
total_loss += loss
|
366 |
-
step += 1
|
367 |
-
|
368 |
-
if step % CONFIG["grad_accum_steps"] == 0:
|
369 |
-
trainer_obj.clip_and_step()
|
370 |
-
avg_loss = total_loss / CONFIG["grad_accum_steps"]
|
371 |
-
total_loss = 0.0
|
372 |
-
|
373 |
-
if optimizer_step % CONFIG["checkpoint_interval"] == 0:
|
374 |
-
checkpoint_manager.save(model, trainer_obj.optimizer, optimizer_step)
|
375 |
-
safety.debug_generation()
|
376 |
-
|
377 |
-
if optimizer_step % CONFIG["debug_interval"] == 0:
|
378 |
-
print(f"Optimizer Step {optimizer_step} | Loss: {avg_loss:.4f}")
|
379 |
-
safety.debug_generation("What's the meaning of life?")
|
380 |
-
|
381 |
-
optimizer_step += 1
|
382 |
-
|
383 |
-
if __name__ == "__main__":
|
384 |
-
train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|