File size: 4,983 Bytes
95d187a
 
bfe7166
95d187a
bfe7166
95d187a
 
bfe7166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77b6e8a
bfe7166
 
 
 
 
95d187a
bfe7166
95d187a
 
bfe7166
 
 
 
1966659
95d187a
 
 
 
 
 
1966659
 
 
 
 
 
 
 
 
 
 
95d187a
 
1966659
 
95d187a
 
 
1966659
95d187a
 
 
1966659
95d187a
 
 
 
 
1966659
95d187a
 
1966659
 
95d187a
 
 
 
1966659
 
 
95d187a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe7166
95d187a
 
 
 
1966659
 
 
 
 
 
 
95d187a
 
1966659
95d187a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import torch
import importlib.util
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
import os

# Download and import model components from HF Hub
model_repo = "TimurHromek/HROM-V1"

# 1. Import trainer module components
trainer_file = hf_hub_download(repo_id=model_repo, filename="HROM-V1.5_Trainer.py")
spec = importlib.util.spec_from_file_location("HROM_Trainer", trainer_file)
trainer_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(trainer_module)
HROM = trainer_module.HROM
CONFIG = trainer_module.CONFIG
SafetyManager = trainer_module.SafetyManager

# 2. Load tokenizer
tokenizer_file = hf_hub_download(repo_id=model_repo, filename="tokenizer/hrom_tokenizer.json")
tokenizer = Tokenizer.from_file(tokenizer_file)

# 3. Load model checkpoint
checkpoint_file = hf_hub_download(repo_id=model_repo, filename="HROM-V1.5_Trained-Model/HROM-V1.5.pt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def load_model():
    model = HROM().to(device)
    checkpoint = torch.load(checkpoint_file, map_location=device)
    model.load_state_dict(checkpoint['model'])
    model.eval()
    return model

model = load_model()
safety = SafetyManager(model, tokenizer)
max_response_length = 200

def generate_response(model, tokenizer, input_ids, safety_manager, max_length=200, temperature=1.0):
    device = next(model.parameters()).device
    generated_ids = input_ids.copy()
    for _ in range(max_length):
        input_tensor = torch.tensor([generated_ids], device=device)
        with torch.no_grad():
            logits = model(input_tensor)
        
        # Get last token logits and apply temperature
        next_token_logits = logits[0, -1, :]
        if temperature != 1.0:
            next_token_logits = next_token_logits / temperature
        probs = torch.softmax(next_token_logits, dim=-1)
        
        # Sample next token
        next_token = torch.multinomial(probs, num_samples=1).item()
        
        # Stop if end token is generated
        if next_token == tokenizer.token_to_id("</s>"):
            break
            
        # Safety check
        current_text = tokenizer.decode(generated_ids + [next_token])
        if not safety_manager.content_filter(current_text):
            break
            
        generated_ids.append(next_token)
    return generated_ids[len(input_ids):]

def process_message(user_input, chat_history, token_history, temperature, max_context_length):
    # Process user input
    user_turn = f"<user> {user_input} </s>"
    user_tokens = tokenizer.encode(user_turn).ids
    token_history.extend(user_tokens)
    
    # Prepare input sequence with context limit
    input_sequence = [tokenizer.token_to_id("<s>")] + token_history
    
    # Truncate based on max context length
    max_input_len = max_context_length
    if len(input_sequence) > max_input_len:
        input_sequence = input_sequence[-max_input_len:]
        token_history = input_sequence[1:]
    
    # Generate response with temperature
    response_ids = generate_response(model, tokenizer, input_sequence, safety, 
                                    max_response_length, temperature)
    
    # Process assistant response
    assistant_text = "I couldn't generate a proper response."
    if response_ids:
        if response_ids[0] == tokenizer.token_to_id("<assistant>"):
            try:
                end_idx = response_ids.index(tokenizer.token_to_id("</s>"))
                assistant_text = tokenizer.decode(response_ids[1:end_idx])
                token_history.extend(response_ids[:end_idx+1])
            except ValueError:
                assistant_text = tokenizer.decode(response_ids[1:])
                token_history.extend(response_ids)
        else:
            assistant_text = tokenizer.decode(response_ids)
            token_history.extend(response_ids)
    
    chat_history.append((user_input, assistant_text))
    return chat_history, token_history

def clear_history():
    return [], []

with gr.Blocks() as demo:
    gr.Markdown("# HROM-V1 Chatbot")
    chatbot = gr.Chatbot(height=500)
    msg = gr.Textbox(label="Your Message")
    token_state = gr.State([])
    
    with gr.Row():
        temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, 
                              label="Temperature (higher = more random)")
        max_context = gr.Slider(100, CONFIG["max_seq_len"] - max_response_length, 
                              value=CONFIG["max_seq_len"] - max_response_length, step=1,
                              label="Max Context Length")
    
    msg.submit(
        process_message,
        [msg, chatbot, token_state, temperature, max_context],
        [chatbot, token_state],
        queue=False
    ).then(
        lambda: "", None, msg
    )
    
    clear_btn = gr.Button("Clear Chat History")
    clear_btn.click(
        clear_history,
        outputs=[chatbot, token_state],
        queue=False
    )

demo.launch()