|
import streamlit as st |
|
|
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel |
|
|
|
|
|
def generate_response(input_text): |
|
|
|
|
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
|
|
output_sequences = model.generate( |
|
input_ids=inputs['input_ids'], |
|
attention_mask=inputs['attention_mask'], |
|
max_length=100, |
|
temperature=0.7, |
|
top_k=50, |
|
top_p=0.95, |
|
no_repeat_ngram_size=2, |
|
pad_token_id=tokenizer.eos_token_id, |
|
|
|
do_sample=True |
|
) |
|
|
|
|
|
full_generated_text = tokenizer.decode(output_sequences[0], skip_special_tokens=True) |
|
|
|
|
|
bot_response_start = full_generated_text.find('[Bot]') + len('[Bot]') |
|
bot_response = full_generated_text[bot_response_start:] |
|
|
|
|
|
last_period_index = bot_response.rfind('.') |
|
if last_period_index != -1: |
|
bot_response = bot_response[:last_period_index + 1] |
|
|
|
return bot_response.strip() |
|
|
|
|
|
model_name = 'KhantKyaw/Chat_GPT-2' |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt = st.text_input("Say Something!", key=None, max_chars=None, disabled=False) |
|
|
|
if prompt: |
|
with st.container(): |
|
|
|
st.markdown(prompt) |
|
|
|
|
|
response = generate_response(prompt) |
|
st.markdown(generate_response(prompt)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|