el-filatova commited on
Commit
31ec1f8
verified
1 Parent(s): 785e78a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -1,21 +1,27 @@
1
  from huggingface_hub import from_pretrained_fastai
2
  import gradio as gr
3
  from fastai.vision.all import *
4
-
5
-
6
 
7
  # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
8
  repo_id = "el-filatova/Practica2"
9
 
10
  learner = from_pretrained_fastai(repo_id)
11
  labels = learner.dls.vocab
 
 
 
 
12
 
13
  # Definimos una funci贸n que se encarga de llevar a cabo las predicciones
14
  def predict(img):
15
- #img = PILImage.create(img)
16
- pred,pred_idx,probs = learner.predict(img)
17
- return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
 
18
 
19
  # Creamos la interfaz y la lanzamos.
20
- gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['image.jpg','image1.jpg', 'image2.jpg']).launch(share=False)
21
 
 
1
  from huggingface_hub import from_pretrained_fastai
2
  import gradio as gr
3
  from fastai.vision.all import *
4
+ from PIL import ImageFile
5
+ from icevision.all import *
6
 
7
  # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
8
  repo_id = "el-filatova/Practica2"
9
 
10
  learner = from_pretrained_fastai(repo_id)
11
  labels = learner.dls.vocab
12
+ class_map = ClassMap(['kangaroo'])
13
+ state_dict = torch.load('fasterRCNNFkangaroo.pth')
14
+ model = models.torchvision.faster_rcnn.model(num_classes=len(class_map))
15
+ model.load_state_dict(state_dict)
16
 
17
  # Definimos una funci贸n que se encarga de llevar a cabo las predicciones
18
  def predict(img):
19
+ img = PILImage.create(img)
20
+ infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
21
+ pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
22
+ return pred_dict
23
+
24
 
25
  # Creamos la interfaz y la lanzamos.
26
+ gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['image.jpg']).launch(share=False)
27