Practica2 / app.py
el-filatova's picture
Update app.py
19f6634 verified
import gradio as gr
import PIL
import torch
from fastai.vision.all import models
from icevision.all import ClassMap, tfms
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "el-filatova/Practica2"
class_map = ClassMap(["kangaroo"])
state_dict = torch.load("fasterRCNNFkangaroo.pth")
model = models.torchvision.faster_rcnn.model(
backbone=models.torchvision.faster_rcnn.backbones.resnet50_fpn,
num_classes=len(class_map),
)
model.load_state_dict(state_dict)
size = 384
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img_file):
img = PIL.Image.open(img_file)
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size), tfms.A.Normalize()])
pred_dict = models.torchvision.faster_rcnn.end2end_detect(
img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5
)
return pred_dict["img"]
# Creamos la interfaz y la lanzamos.
gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(128, 128)),
outputs=gr.outputs.Label(num_top_classes=3),
examples=["image.jpg"],
).launch(share=False)