from typing import List import gradio as gr import PIL.Image, PIL.ImageOps import torch import numpy as np import torchvision.transforms as T from src.models.yolov3 import YOLOv3 from src.train import draw_bounding_boxes, decode_predictions_3scales from src.dataset import ANCHORS, resize_with_padding device = torch.device("cpu") model_weight = "weights/checkpoint-best.pth" label_colors = {"without_mask": (178, 34, 34), "with_mask": (34, 139, 34), "mask_worn_incorrectly": (184, 134, 11)} model = YOLOv3() model.load_state_dict(torch.load(model_weight, map_location=device)) model.eval() def create_combined_image(img: torch.Tensor, results: List[torch.Tensor], mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]): batch_size, _, height, width = img.shape combined_height = height combined_width = width * batch_size combined_image = np.zeros((combined_height, combined_width, 3), dtype=np.uint8) for i in range(batch_size): image = img[i].cpu().permute(1, 2, 0).numpy() image = (image * std + mean).clip(0, 1) image = (image * 255).astype(np.uint8) pred_image = PIL.Image.fromarray(image.copy()) draw_bounding_boxes(pred_image, results[i], show_conf=True) combined_image[:height, i * width:(i + 1) * width, :] = np.array(pred_image) return PIL.Image.fromarray(combined_image) transform = T.Compose([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def detect_mask(image, conf_threshold: float) -> PIL.Image: img_resized, _, _, _ = resize_with_padding(image) img_tensor = transform(img_resized) with torch.no_grad(): out_l, out_m, out_s = model(img_tensor.unsqueeze(0)) results = decode_predictions_3scales(out_l, out_m, out_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"], conf_threshold=conf_threshold) combined_image = create_combined_image(img_tensor.unsqueeze(0), results) return combined_image def generate_legend_html_compact() -> str: legend_html = """
""" for idx, (label, color) in enumerate(label_colors.items()): legend_html += f"""
{label}
""" legend_html += "
" return legend_html examples = [ ["assets/examples/image1.jpg"], ["assets/examples/image2.jpg"], ["assets/examples/image3.jpg"], ["assets/examples/image4.jpg"], ["assets/examples/image5.jpg"] ] with gr.Blocks() as demo: gr.Markdown("## Mask Detection with YOLOv3") with gr.Row(): with gr.Column(): pic = gr.Image(label="Upload Human Image", type="pil", height=300, width=300) conf_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.01, label="Confidence Threshold") with gr.Row(): with gr.Column(scale=1): predict_btn = gr.Button("Predict") with gr.Column(scale=1): clear_btn = gr.Button("Clear") with gr.Column(): output = gr.Image(label="Detection", type="pil", height=300, width=300) legend = gr.HTML(label="Legend", value=generate_legend_html_compact()) predict_btn.click(fn=detect_mask, inputs=[pic, conf_slider], outputs=output, api_name="predict") clear_btn.click(lambda: (None, None), outputs=[pic, output]) gr.Examples(examples=examples, inputs=[pic]) demo.launch()