mask-detection / src /train.py
eksemyashkina's picture
Update src/train.py
bf9a8c8 verified
import math
from pathlib import Path
from typing import List, Tuple, Dict
from tqdm import tqdm
import argparse
from accelerate import Accelerator
from accelerate.utils import set_seed
import wandb
import torch
from torch import nn
from torch.utils.data import DataLoader
import torchvision.ops as ops
import PIL
import numpy as np
from src.dataset import MaskDataset, collate_fn, ANCHORS
from src.utils import EMA
from src.models.yolov3 import YOLOv3
from src.loss import YoloLoss
class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer: torch.optim.Optimizer, warmup_steps: int, total_steps: int, eta_min: int = 0, last_epoch: int = -1) -> None:
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self) -> List[float]:
if self.last_epoch < self.warmup_steps:
return [base_lr * (self.last_epoch / max(1, self.warmup_steps)) for base_lr in self.base_lrs]
else:
current_step = self.last_epoch - self.warmup_steps
cosine_steps = max(1, self.total_steps - self.warmup_steps)
return [self.eta_min + (base_lr - self.eta_min) * 0.5 * (1 + math.cos(math.pi * current_step / cosine_steps)) for base_lr in self.base_lrs]
def draw_bounding_boxes(image: PIL.Image.Image, boxes: torch.Tensor, colors: Dict[int, int] = {0: (178, 34, 34), 1: (34, 139, 34), 2: (184, 134, 11)}, labels = {0: "without_mask", 1: "with_mask", 2: "weared_incorrect"}, show_conf = False) -> None:
draw = PIL.ImageDraw.Draw(image)
for box in boxes:
xmin, ymin, xmax, ymax, class_id = int(box[0]), int(box[1]), int(box[2]), int(box[3]), int(box[-1])
conf_text = ""
if show_conf and box.shape[0] == 6:
conf = float(box[4])
conf_text = f" {conf:.2f}"
color = colors.get(class_id, (255, 255, 255))
label = labels.get(class_id, "Unknown") + conf_text
draw.rectangle([xmin, ymin, xmax, ymax], outline=color, width=2)
text_bbox = draw.textbbox((xmin, ymin), label)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
draw.rectangle([xmin, ymin - text_height - 2, xmin + text_width + 2, ymin], fill=color)
draw.text((xmin + 1, ymin - text_height - 1), label, fill="white")
def create_combined_image(img: torch.Tensor, gt_batch: List[torch.Tensor], results: List[torch.Tensor], mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]):
batch_size, _, height, width = img.shape
combined_height = height * 2
combined_width = width * batch_size
combined_image = np.zeros((combined_height, combined_width, 3), dtype=np.uint8)
for i in range(batch_size):
image = img[i].cpu().permute(1, 2, 0).numpy()
image = (image * std + mean).clip(0, 1)
image = (image * 255).astype(np.uint8)
gt_image = PIL.Image.fromarray(image.copy())
pred_image = PIL.Image.fromarray(image.copy())
draw_bounding_boxes(gt_image, gt_batch[i])
draw_bounding_boxes(pred_image, results[i], show_conf=True)
combined_image[:height, i * width:(i + 1) * width, :] = np.array(gt_image)
combined_image[height:, i * width:(i + 1) * width, :] = np.array(pred_image)
return PIL.Image.fromarray(combined_image)
def decode_yolo_output_single(prediction: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.3, apply_nms: bool = True, num_classes: int = 3) -> List[torch.Tensor]:
device = prediction.device
B, _, H, W = prediction.shape
A = len(anchors)
prediction = prediction.view(B, A, 5 + num_classes, H, W)
prediction = prediction.permute(0, 1, 3, 4, 2).contiguous()
tx = prediction[..., 0]
ty = prediction[..., 1]
tw = prediction[..., 2]
th = prediction[..., 3]
obj = prediction[..., 4]
class_scores = prediction[..., 5:]
tx = tx.sigmoid()
ty = ty.sigmoid()
obj = obj.sigmoid()
class_scores = class_scores.softmax(dim=-1)
img_w, img_h = image_size
cell_w = img_w / W
cell_h = img_h / H
grid_x = torch.arange(W, device=device).view(1, 1, W).expand(1, H, W)
grid_y = torch.arange(H, device=device).view(1, H, 1).expand(1, H, W)
anchors_tensor = torch.tensor(anchors, dtype=torch.float32, device=device)
anchor_w = anchors_tensor[:, 0].view(1, A, 1, 1)
anchor_h = anchors_tensor[:, 1].view(1, A, 1, 1)
x_center = (grid_x + tx) * cell_w
y_center = (grid_y + ty) * cell_h
w = torch.exp(tw) * anchor_w
h = torch.exp(th) * anchor_h
xmin = x_center - w / 2
ymin = y_center - h / 2
xmax = x_center + w / 2
ymax = y_center + h / 2
max_class_probs, class_ids = class_scores.max(dim=-1)
confidence = obj * max_class_probs
outputs = []
for b_i in range(B):
box_xmin = xmin[b_i].view(-1)
box_ymin = ymin[b_i].view(-1)
box_xmax = xmax[b_i].view(-1)
box_ymax = ymax[b_i].view(-1)
conf = confidence[b_i].view(-1)
cls_id = class_ids[b_i].view(-1).float()
mask = (conf > conf_threshold)
box_xmin = box_xmin[mask]
box_ymin = box_ymin[mask]
box_xmax = box_xmax[mask]
box_ymax = box_ymax[mask]
conf = conf[mask]
cls_id = cls_id[mask]
if mask.sum() == 0:
outputs.append(torch.empty((0, 6), device=device))
continue
boxes = torch.stack([box_xmin, box_ymin, box_xmax, box_ymax], dim=-1)
if apply_nms:
keep = ops.nms(boxes, conf, iou_threshold)
boxes = boxes[keep]
conf = conf[keep]
cls_id = cls_id[keep]
out = torch.cat([boxes, conf.unsqueeze(-1), cls_id.unsqueeze(-1)], dim=-1)
outputs.append(out)
return outputs
def decode_predictions_3scales(out_l: torch.Tensor, out_m: torch.Tensor, out_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int, int]], anchors_s: List[Tuple[int, int]], image_size: Tuple[int, int] = (416, 416), conf_threshold: float = 0.5, iou_threshold: float = 0.45, num_classes: int = 3) -> List[torch.Tensor]:
b_l = decode_yolo_output_single(out_l, anchors_l, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
b_m = decode_yolo_output_single(out_m, anchors_m, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
b_s = decode_yolo_output_single(out_s, anchors_s, image_size, conf_threshold, iou_threshold, apply_nms=False, num_classes=num_classes)
results = []
B = len(b_l)
for i in range(B):
boxes_all = torch.cat([b_l[i], b_m[i], b_s[i]], dim=0)
if boxes_all.numel() == 0:
results.append(boxes_all)
continue
xyxy = boxes_all[:, :4]
scores = boxes_all[:, 4]
keep = ops.nms(xyxy, scores, iou_threshold)
final = boxes_all[keep]
results.append(final)
return results
def decode_target_single(target: torch.Tensor, anchors: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
args = parse_args()
target = target.to(args.device)
B, S, _, A, _ = target.shape
img_w, img_h = image_size
cell_w = img_w / S
cell_h = img_h / S
anchors_tensor = torch.tensor(anchors, dtype=torch.float)
tx = target[..., 0]
ty = target[..., 1]
tw = target[..., 2]
th = target[..., 3]
tobj = target[..., 4]
tcls = target[..., 5:]
results = []
for b_i in range(B):
bx_list = []
tx_b = tx[b_i]
ty_b = ty[b_i]
tw_b = tw[b_i]
th_b = th[b_i]
tobj_b = tobj[b_i]
tcls_b = tcls[b_i]
for i in range(S):
for j in range(S):
for a_i in range(A):
if tobj_b[i,j,a_i] < obj_threshold:
continue
cls_one_hot = tcls_b[i, j, a_i]
cls_id = cls_one_hot.argmax().item()
x_center = (j + tx_b[i, j, a_i].item()) * cell_w
y_center = (i + ty_b[i, j, a_i].item()) * cell_h
anchor_w = anchors_tensor[a_i, 0]
anchor_h = anchors_tensor[a_i, 1]
box_w = torch.exp(tw_b[i, j, a_i]) * anchor_w
box_h = torch.exp(th_b[i, j, a_i]) * anchor_h
xmin = x_center - box_w / 2
ymin = y_center - box_h / 2
xmax = x_center + box_w / 2
ymax = y_center + box_h / 2
bx_list.append([xmin.item(), ymin.item(), xmax.item(), ymax.item(), cls_id])
if len(bx_list) == 0:
results.append(torch.empty((0, 5), dtype=torch.float32, device=args.device))
else:
results.append(torch.tensor(bx_list, dtype=torch.float32, device=args.device))
return results
def decode_target_3scales(t_l: torch.Tensor, t_m: torch.Tensor, t_s: torch.Tensor, anchors_l: List[Tuple[int]], anchors_m: List[Tuple[int]], anchors_s: List[Tuple[int]], image_size: Tuple[int] = (416, 416), obj_threshold: float = 0.5) -> List[torch.Tensor]:
dec_l = decode_target_single(t_l, anchors_l, image_size, obj_threshold)
dec_m = decode_target_single(t_m, anchors_m, image_size, obj_threshold)
dec_s = decode_target_single(t_s, anchors_s, image_size, obj_threshold)
results = []
B = len(dec_l)
for i in range(B):
boxes_l = dec_l[i]
boxes_m = dec_m[i]
boxes_s = dec_s[i]
if boxes_l.numel() == 0 and boxes_m.numel() == 0 and boxes_s.numel() == 0:
results.append(torch.empty((0, 5), dtype=torch.float32, device=boxes_l.device))
else:
all_ = torch.cat([boxes_l, boxes_m, boxes_s], dim=0)
results.append(all_)
return results
def iou_xyxy(box1: List[int | float], box2: List[int | float]) -> float:
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
w = max(0., x2 - x1)
h = max(0., y2 - y1)
inter = w * h
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area1 + area2 - inter
return inter / union if union > 0 else 0.0
def compute_ap_per_class(boxes_pred: List[List[float]], boxes_gt: List[List[float]], iou_threshold: float = 0.45) -> float:
boxes_pred = sorted(boxes_pred, key=lambda x: x[4], reverse=True)
n_gt = len(boxes_gt)
if n_gt == 0 and len(boxes_pred) == 0:
return 1.0
if n_gt == 0:
return 0.0
matched = [False] * n_gt
tps = []
fps = []
for i, pred in enumerate(boxes_pred):
best_iou = 0.0
best_j = -1
for j, gt in enumerate(boxes_gt):
if matched[j]:
continue
iou = iou_xyxy(pred, gt)
if iou > best_iou:
best_iou = iou
best_j = j
if best_iou > iou_threshold and best_j >= 0:
tps.append(1)
fps.append(0)
matched[best_j] = True
else:
tps.append(0)
fps.append(1)
tps_cum = []
fps_cum = []
s_tp = 0
s_fp = 0
for i in range(len(tps)):
s_tp += tps[i]
s_fp += fps[i]
tps_cum.append(s_tp)
fps_cum.append(s_fp)
precisions = []
recalls = []
for i in range(len(tps)):
prec = tps_cum[i] / (tps_cum[i] + fps_cum[i]) if (tps_cum[i] + fps_cum[i]) > 0 else 0
rec = tps_cum[i] / n_gt
precisions.append(prec)
recalls.append(rec)
recalls = [0.0] + recalls + [1.0]
precisions = [1.0] + precisions + [0.0]
for i in range(len(precisions) - 2, -1, -1):
precisions[i] = max(precisions[i], precisions[i+1])
ap = 0.0
for i in range(len(precisions) - 1):
ap += (recalls[i+1] - recalls[i]) * precisions[i+1]
return ap
def compute_map(all_pred: List[float], all_gt: List[float], num_classes: int = 3, iou_threshold: float = 0.45) -> float:
APs = []
for c in range(num_classes):
ap_c = compute_ap_per_class(all_pred[c], all_gt[c], iou_threshold)
APs.append(ap_c)
mAP = sum(APs) / len(APs) if len(APs) > 0 else 0.0
return mAP
def parse_args():
parser = argparse.ArgumentParser(description="Train a model on the face mask detection dataset")
parser.add_argument("--root", type=str, default="data/masks", help="Path to the data")
parser.add_argument("--batch-size", type=int, default=16, help="Batch size for training and testing")
parser.add_argument("--logs-dir", type=str, default="yolo-logs", help="Path to save logs")
parser.add_argument("--pin-memory", type=bool, default=True, help="Pin Memory for DataLoader")
parser.add_argument("--num-workers", type=int, default=0, help="Number of workers for DataLoader")
parser.add_argument("--num-epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("--optimizer", type=str, default="AdamW", help="Optimizer type")
parser.add_argument("--learning-rate", type=float, default=5e-4, help="Learning rate for the optimizer")
parser.add_argument("--save-frequency", type=int, default=4, help="Frequency of saving model weights")
parser.add_argument("--max-norm", type=float, default=10.0, help="Maximum gradient norm for clipping")
parser.add_argument("--project-name", type=str, default="YOLOv3, mask detection", help="Wandb project name")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to run the training on")
parser.add_argument("--weights-path", type=str, default="weights/darknet53.pth", help="Path to the weights")
parser.add_argument("--seed", type=int, default=42, help="Value of the seed")
parser.add_argument("--mixed-precision", type=str, default="fp16", choices=["fp16", "bf16", "fp8", "no"], help="Value of the mixed precision")
parser.add_argument("--gradient-accumulation-steps", type=int, default=2, help="Value of the gradient accumulation steps")
parser.add_argument("--log-steps", type=int, default=13, help="Number of steps between logging training images and metrics")
parser.add_argument("--num-warmup-steps", type=int, default=400, help="Number of steps")
return parser.parse_args()
def main() -> None:
args = parse_args()
set_seed(args.seed)
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision)
with accelerator.main_process_first():
logs_dir = Path(args.logs_dir)
logs_dir.mkdir(exist_ok=True)
wandb.init(project=args.project_name, dir=logs_dir)
train_dataset = MaskDataset(root=args.root, train=True)
test_dataset = MaskDataset(root=args.root, train=False)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
model = YOLOv3().to(accelerator.device)
optimizer_class = getattr(torch.optim, args.optimizer)
if args.weights_path:
weights = torch.load(args.weights_path, map_location="cpu", weights_only=True)
model.backbone.load_state_dict(weights)
optimizer = optimizer_class(model.parameters(), lr=args.learning_rate)
criterion = YoloLoss(class_counts=train_dataset.class_counts)
scheduler = WarmupCosineAnnealingLR(optimizer, warmup_steps=args.num_warmup_steps//args.gradient_accumulation_steps, total_steps=args.num_epochs*len(train_loader)//args.gradient_accumulation_steps, eta_min=1e-7)
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
best_map = 0.0
train_loss_ema = EMA()
for epoch in range(1, args.num_epochs + 1):
model.train()
pbar = tqdm(train_loader, desc = f"Train epoch {epoch} / {args.num_epochs}")
for images, (t_l, t_m, t_s) in pbar:
images = images.to(accelerator.device)
t_l = t_l.to(accelerator.device)
t_m = t_m.to(accelerator.device)
t_s = t_s.to(accelerator.device)
with accelerator.accumulate(model):
with accelerator.autocast():
out_l, out_m, out_s = model(images)
loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
accelerator.backward(loss)
grad_norm = None
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(model.parameters(), args.max_norm).item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
lr = scheduler.get_last_lr()[0]
pbar.set_postfix({"loss": train_loss_ema(loss.item())})
log_data = {
"train/epoch": epoch,
"train/loss": loss.item(),
"train/lr": lr
}
if grad_norm is not None:
log_data["train/grad_norm"] = grad_norm
if accelerator.is_main_process:
wandb.log(log_data)
accelerator.wait_for_everyone()
model.eval()
all_pred = [[] for _ in range(model.num_classes)]
all_gt = [[] for _ in range(model.num_classes)]
with torch.inference_mode():
test_loss = 0.0
pbar = tqdm(test_loader, desc=f"Test epoch {epoch} / {args.num_epochs}")
for index, (images, (t_l, t_m, t_s)) in enumerate(pbar):
images = images.to(accelerator.device)
t_l = t_l.to(accelerator.device)
t_m = t_m.to(accelerator.device)
t_s = t_s.to(accelerator.device)
out_l, out_m, out_s = model(images)
loss = criterion((out_l, out_m, out_s), (t_l, t_m, t_s))
test_loss += loss.item()
results = decode_predictions_3scales(out_l, out_m, out_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
gt_batch = decode_target_3scales(t_l, t_m, t_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"])
if (index + 1) % args.log_steps == 0 and accelerator.is_main_process:
images_to_log = []
combined_image = create_combined_image(images, gt_batch, results)
images_to_log.append(wandb.Image(combined_image, caption=f"Combined Image (Test, Epoch {epoch})"))
wandb.log({"test_samples": images_to_log})
for b_i in range(len(images)):
dets_b = results[b_i].detach().cpu().numpy()
gts_b = gt_batch[b_i].detach().cpu().numpy()
for db in dets_b:
c = int(db[5])
all_pred[c].append([db[0], db[1], db[2], db[3], db[4]])
for gb in gts_b:
c = int(gb[4])
all_gt[c].append([gb[0], gb[1], gb[2], gb[3]])
test_loss /= len(test_loader)
test_map = compute_map(all_pred, all_gt)
accelerator.print(f"loss: {test_loss:.3f}, map: {test_map:.3f}")
if accelerator.is_main_process:
wandb.log({
"epoch": epoch,
"test/loss": test_loss,
"test/mAP": test_map
})
if test_map > best_map:
best_map = test_map
accelerator.save(model.state_dict(), logs_dir / "checkpoint-best.pth")
elif epoch % args.save_frequency == 0:
accelerator.save(model.state_dict(), logs_dir / f"checkpoint-{epoch:09}.pth")
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
wandb.finish()
if __name__ == "__main__":
main()