Spaces:
Running
Running
from typing import List | |
import gradio as gr | |
import PIL.Image, PIL.ImageOps | |
import torch | |
import numpy as np | |
import torchvision.transforms as T | |
from src.models.yolov3 import YOLOv3 | |
from src.train import draw_bounding_boxes, decode_predictions_3scales | |
from src.dataset import ANCHORS, resize_with_padding | |
device = torch.device("cpu") | |
model_weight = "weights/checkpoint-best.pth" | |
label_colors = {"without_mask": (178, 34, 34), "with_mask": (34, 139, 34), "mask_worn_incorrectly": (184, 134, 11)} | |
model = YOLOv3() | |
model.load_state_dict(torch.load(model_weight, map_location=device)) | |
model.eval() | |
def create_combined_image(img: torch.Tensor, results: List[torch.Tensor], mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]): | |
batch_size, _, height, width = img.shape | |
combined_height = height | |
combined_width = width * batch_size | |
combined_image = np.zeros((combined_height, combined_width, 3), dtype=np.uint8) | |
for i in range(batch_size): | |
image = img[i].cpu().permute(1, 2, 0).numpy() | |
image = (image * std + mean).clip(0, 1) | |
image = (image * 255).astype(np.uint8) | |
pred_image = PIL.Image.fromarray(image.copy()) | |
draw_bounding_boxes(pred_image, results[i], show_conf=True) | |
combined_image[:height, i * width:(i + 1) * width, :] = np.array(pred_image) | |
return PIL.Image.fromarray(combined_image) | |
transform = T.Compose([ | |
T.ToTensor(), | |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def detect_mask(image, conf_threshold: float) -> PIL.Image: | |
img_resized, _, _, _ = resize_with_padding(image) | |
img_tensor = transform(img_resized) | |
with torch.no_grad(): | |
out_l, out_m, out_s = model(img_tensor.unsqueeze(0)) | |
results = decode_predictions_3scales(out_l, out_m, out_s, ANCHORS["large"], ANCHORS["medium"], ANCHORS["small"], conf_threshold=conf_threshold) | |
combined_image = create_combined_image(img_tensor.unsqueeze(0), results) | |
return combined_image | |
def generate_legend_html_compact() -> str: | |
legend_html = """ | |
<div style="display: flex; flex-wrap: wrap; gap: 10px; justify-content: center;"> | |
""" | |
for idx, (label, color) in enumerate(label_colors.items()): | |
legend_html += f""" | |
<div style="display: flex; align-items: center; justify-content: center; | |
padding: 5px 10px; border: 1px solid rgb{color}; | |
background-color: rgb{color}; border-radius: 5px; | |
color: white; font-size: 12px; text-align: center;"> | |
{label} | |
</div> | |
""" | |
legend_html += "</div>" | |
return legend_html | |
examples = [ | |
["assets/examples/image1.jpg"], | |
["assets/examples/image2.jpg"], | |
["assets/examples/image3.jpg"], | |
["assets/examples/image4.jpg"], | |
["assets/examples/image5.jpg"] | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("## Mask Detection with YOLOv3") | |
with gr.Row(): | |
with gr.Column(): | |
pic = gr.Image(label="Upload Human Image", type="pil", height=300, width=300) | |
conf_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.01, label="Confidence Threshold") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
predict_btn = gr.Button("Predict") | |
with gr.Column(scale=1): | |
clear_btn = gr.Button("Clear") | |
with gr.Column(): | |
output = gr.Image(label="Detection", type="pil", height=300, width=300) | |
legend = gr.HTML(label="Legend", value=generate_legend_html_compact()) | |
predict_btn.click(fn=detect_mask, inputs=[pic, conf_slider], outputs=output, api_name="predict") | |
clear_btn.click(lambda: (None, None), outputs=[pic, output]) | |
gr.Examples(examples=examples, inputs=[pic]) | |
demo.launch() |