Spaces:
Running
Running
File size: 8,773 Bytes
f514e23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from typing import Tuple, List
import torch
import torch.nn as nn
import torch.nn.functional as F
def box_iou_xyxy(boxes1: torch.Tensor, boxes2: torch.Tensor) -> torch.Tensor:
N = boxes1.size(0)
M = boxes2.size(0)
x1_1, y1_1, x2_1, y2_1 = boxes1[:, 0], boxes1[:, 1], boxes1[:, 2], boxes1[:, 3]
x1_2, y1_2, x2_2, y2_2 = boxes2[:, 0], boxes2[:, 1], boxes2[:, 2], boxes2[:, 3]
x1_1 = x1_1.unsqueeze(1).expand(N, M)
y1_1 = y1_1.unsqueeze(1).expand(N, M)
x2_1 = x2_1.unsqueeze(1).expand(N, M)
y2_1 = y2_1.unsqueeze(1).expand(N, M)
x1_2 = x1_2.unsqueeze(0).expand(N, M)
y1_2 = y1_2.unsqueeze(0).expand(N, M)
x2_2 = x2_2.unsqueeze(0).expand(N, M)
y2_2 = y2_2.unsqueeze(0).expand(N, M)
interX1 = torch.max(x1_1, x1_2)
interY1 = torch.max(y1_1, y1_2)
interX2 = torch.min(x2_1, x2_2)
interY2 = torch.min(y2_1, y2_2)
interW = (interX2 - interX1).clamp(min=0)
interH = (interY2 - interY1).clamp(min=0)
interArea = interW * interH
area1 = (x2_1 - x1_1).clamp(min=0) * (y2_1 - y1_1).clamp(min=0)
area2 = (x2_2 - x1_2).clamp(min=0) * (y2_2 - y1_2).clamp(min=0)
union = area1 + area2 - interArea + 1e-16
iou = interArea / union
return iou
def box_giou_xyxy(boxes1: torch.Tensor, boxes2: torch.Tensor) -> torch.Tensor:
xA = torch.max(boxes1[:, 0], boxes2[:, 0])
yA = torch.max(boxes1[:, 1], boxes2[:, 1])
xB = torch.min(boxes1[:, 2], boxes2[:, 2])
yB = torch.min(boxes1[:, 3], boxes2[:, 3])
interW = (xB - xA).clamp(min=0)
interH = (yB - yA).clamp(min=0)
interArea = interW * interH
area1 = (boxes1[:, 2] - boxes1[:, 0]).clamp(min=0) * (boxes1[:, 3] - boxes1[:, 1]).clamp(min=0)
area2 = (boxes2[:, 2] - boxes2[:, 0]).clamp(min=0) * (boxes2[:, 3] - boxes2[:, 1]).clamp(min=0)
union = area1 + area2 - interArea + 1e-16
iou = interArea / union
xC1 = torch.min(boxes1[:, 0], boxes2[:, 0])
yC1 = torch.min(boxes1[:, 1], boxes2[:, 1])
xC2 = torch.max(boxes1[:, 2], boxes2[:, 2])
yC2 = torch.max(boxes1[:, 3], boxes2[:, 3])
encloseW = (xC2 - xC1).clamp(min=0)
encloseH = (yC2 - yC1).clamp(min=0)
encloseArea = encloseW * encloseH + 1e-16
giou = iou - (encloseArea - union) / encloseArea
return giou
class YoloLoss(nn.Module):
def __init__(self, class_counts: List[int], anchors_l: List[int] = [(128, 152), (182, 205), (103, 124)], anchors_m: List[int] = [(78, 88), (55, 59), (37, 42)], anchors_s: List[int] = [(26, 28), (17, 19), (10, 11)], image_size: Tuple[int] = (416, 416), num_classes: int = 3, ignore_thresh: float = 0.7, lambda_noobj: float = 5.0):
super().__init__()
self.anchors_l = anchors_l
self.anchors_m = anchors_m
self.anchors_s = anchors_s
self.image_size = image_size
self.num_classes = num_classes
self.ignore_thresh = ignore_thresh
self.lambda_noobj = lambda_noobj
total = sum(class_counts)
w_list = [total / (c + 1e-5) * (2.0 if c_id == 0 else (3.0 if c_id == 2 else 1.0)) for c_id, c in enumerate(class_counts)]
self.class_weight = torch.tensor(w_list, dtype=torch.float32)
self.bce_obj = nn.BCEWithLogitsLoss(reduction="none")
self.bce_cls = nn.BCEWithLogitsLoss(weight=self.class_weight, reduction="none")
def forward(self, outputs: Tuple[torch.Tensor], targets: Tuple[torch.Tensor]) -> torch.Tensor:
out_l, out_m, out_s = outputs
t_l, t_m, t_s = targets
loss_l = self._loss_single_scale(out_l, t_l, self.anchors_l, scale_wh=(13, 13))
loss_m = self._loss_single_scale(out_m, t_m, self.anchors_m, scale_wh=(26, 26))
loss_s = self._loss_single_scale(out_s, t_s, self.anchors_s, scale_wh=(52, 52))
return loss_l + loss_m + loss_s
def _loss_single_scale(self, pred: torch.Tensor, target: torch.Tensor, anchors: List[Tuple[int]], scale_wh: Tuple[int]) -> torch.Tensor:
device = pred.device
B, _, H, W = pred.shape
A = len(anchors)
pred = pred.view(B, A, (5 + self.num_classes), H, W)
pred = pred.permute(0, 3, 4, 1, 2).contiguous()
pred_tx = pred[..., 0]
pred_ty = pred[..., 1]
pred_tw = pred[..., 2]
pred_th = pred[..., 3]
pred_obj = pred[..., 4]
pred_cls = pred[..., 5:]
tgt_tx = target[..., 0]
tgt_ty = target[..., 1]
tgt_tw = target[..., 2]
tgt_th = target[..., 3]
tgt_obj = target[..., 4]
tgt_cls = target[..., 5:]
obj_mask = (tgt_obj == 1)
noobj_mask = (tgt_obj == 0)
img_w, img_h = self.image_size
stride_x = img_w / W
stride_y = img_h / H
grid_x = torch.arange(W, device=device).view(1, 1, W, 1).expand(1, H, W, 1)
grid_y = torch.arange(H, device=device).view(1, H, 1, 1).expand(1, H, W, 1)
anchors_t = torch.tensor(anchors, dtype=torch.float, device=device)
anchor_w = anchors_t[:, 0].view(1, 1, 1, A)
anchor_h = anchors_t[:, 1].view(1, 1, 1, A)
pred_box_xc = (grid_x + torch.sigmoid(pred_tx)) * stride_x
pred_box_yc = (grid_y + torch.sigmoid(pred_ty)) * stride_y
pred_box_w = torch.exp(pred_tw) * anchor_w
pred_box_h = torch.exp(pred_th) * anchor_h
pred_x1 = pred_box_xc - pred_box_w / 2
pred_y1 = pred_box_yc - pred_box_h / 2
pred_x2 = pred_box_xc + pred_box_w / 2
pred_y2 = pred_box_yc + pred_box_h / 2
gt_box_xc = (grid_x + tgt_tx) * stride_x
gt_box_yc = (grid_y + tgt_ty) * stride_y
gt_box_w = torch.exp(tgt_tw) * anchor_w
gt_box_h = torch.exp(tgt_th) * anchor_h
gt_x1 = gt_box_xc - gt_box_w / 2
gt_y1 = gt_box_yc - gt_box_h /2
gt_x2 = gt_box_xc + gt_box_w / 2
gt_y2 = gt_box_yc + gt_box_h / 2
with torch.no_grad():
ignore_mask_buf = torch.zeros_like(tgt_obj, dtype=torch.bool)
noobj_flat = noobj_mask.view(-1)
obj_flat = obj_mask.view(-1)
px1f = pred_x1.view(-1)
py1f = pred_y1.view(-1)
px2f = pred_x2.view(-1)
py2f = pred_y2.view(-1)
gx1f = gt_x1.view(-1)[obj_flat]
gy1f = gt_y1.view(-1)[obj_flat]
gx2f = gt_x2.view(-1)[obj_flat]
gy2f = gt_y2.view(-1)[obj_flat]
if noobj_flat.sum() > 0 and obj_flat.sum() > 0:
noobj_idx = noobj_flat.nonzero(as_tuple=True)[0]
noobj_boxes_xyxy = torch.stack([px1f[noobj_idx], py1f[noobj_idx], px2f[noobj_idx], py2f[noobj_idx]], dim=-1)
obj_boxes_xyxy = torch.stack([gx1f, gy1f, gx2f, gy2f], dim=-1)
ious = box_iou_xyxy(noobj_boxes_xyxy, obj_boxes_xyxy)
best_iou, _ = ious.max(dim=1)
ignore_flags = (best_iou > self.ignore_thresh)
all_idx = noobj_idx[ignore_flags]
ignore_mask_buf.view(-1)[all_idx] = True
ignore_mask = ignore_mask_buf
obj_loss = self.bce_obj(pred_obj[obj_mask], torch.ones_like(pred_obj[obj_mask]))
obj_loss = obj_loss.mean() if obj_loss.numel() > 0 else torch.tensor(0., device=device)
noobj_mask_final = (noobj_mask & (~ignore_mask))
noobj_loss = self.bce_obj(pred_obj[noobj_mask_final], torch.zeros_like(pred_obj[noobj_mask_final]))
noobj_loss = noobj_loss.mean() if noobj_loss.numel() > 0 else torch.tensor(0., device=device)
objectness_loss = obj_loss + self.lambda_noobj * noobj_loss
class_loss = torch.tensor(0., device=device, requires_grad=True)
if obj_mask.sum() > 0:
self.bce_cls.weight = self.class_weight.to(device)
cls_pred = pred_cls[obj_mask].to(device)
cls_gt = tgt_cls[obj_mask].to(device)
c_loss = self.bce_cls(cls_pred, cls_gt)
class_loss = c_loss.mean()
giou_loss = torch.tensor(0., device=device, requires_grad=True)
if obj_mask.sum() > 0:
px1_ = pred_x1[obj_mask]
py1_ = pred_y1[obj_mask]
px2_ = pred_x2[obj_mask]
py2_ = pred_y2[obj_mask]
p_xyxy = torch.stack([px1_,py1_,px2_,py2_], dim=-1)
gx1_ = gt_x1[obj_mask]
gy1_ = gt_y1[obj_mask]
gx2_ = gt_x2[obj_mask]
gy2_ = gt_y2[obj_mask]
g_xyxy = torch.stack([gx1_,gy1_,gx2_,gy2_], dim=-1)
giou = box_giou_xyxy(p_xyxy, g_xyxy)
giou_loss = (1. - giou).mean()
total_loss = objectness_loss + class_loss + giou_loss
if total_loss is None:
pass
return total_loss |