import torch import torch.nn as nn class SegmentationHead(nn.Module): def __init__(self, in_channels: int, num_classes: int): super().__init__() self.head = nn.Sequential( nn.Conv2d(in_channels, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Upsample(size=(64, 64), mode="bilinear"), nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.Upsample(size=(128, 128), mode="bilinear"), nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Upsample(size=(224, 224), mode="bilinear"), nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.ReLU(), nn.Conv2d(32, num_classes, kernel_size=3, padding=1), ) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.head(x)