Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class SegmentationHead(nn.Module): | |
def __init__(self, in_channels: int, num_classes: int): | |
super().__init__() | |
self.head = nn.Sequential( | |
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Conv2d(256, 256, kernel_size=3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Upsample(size=(64, 64), mode="bilinear"), | |
nn.Conv2d(256, 128, kernel_size=3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Conv2d(128, 128, kernel_size=3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Upsample(size=(128, 128), mode="bilinear"), | |
nn.Conv2d(128, 64, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Conv2d(64, 64, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Upsample(size=(224, 224), mode="bilinear"), | |
nn.Conv2d(64, 32, kernel_size=3, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(), | |
nn.Conv2d(32, 32, kernel_size=3, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(), | |
nn.Conv2d(32, num_classes, kernel_size=3, padding=1), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.head(x) |