Spaces:
Runtime error
Runtime error
from transformers import Dinov2Backbone | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from src.models.segmentation_head import SegmentationHead | |
class DINOSegmentationModel(nn.Module): | |
def __init__(self, image_size: int = 224, num_classes: int = 9) -> None: | |
super().__init__() | |
self.mean = [0.485, 0.456, 0.406] | |
self.std = [0.229, 0.224, 0.225] | |
self.image_size = image_size | |
model_name = "facebook/dinov2-small" | |
self.backbone = Dinov2Backbone.from_pretrained(model_name) | |
for param in self.backbone.parameters(): | |
param.requires_grad = False | |
self.segmentation_head = SegmentationHead(in_channels=384, num_classes=num_classes) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
batch_size, channels, height, width = x.size() | |
assert height == width == self.image_size, "The image must match the size required by the DINO model" | |
features = self.backbone(pixel_values=x).feature_maps[0] | |
masks = self.segmentation_head(features) | |
return masks | |
def main() -> None: | |
model = DINOSegmentationModel(384, 18) | |
num_params = sum([p.numel() for p in model.parameters()]) | |
print(f"params: {num_params/1e6:.2f} M") | |
if __name__ == "__main__": | |
main() |