import gradio as gr import json import os import spaces import torch from transformers import AutoTokenizer, AutoModelForCausalLM import huggingface_hub import prep_decompiled print("Hello!") hf_key = os.environ["HF_TOKEN"] huggingface_hub.login(token=hf_key) tokenizer = AutoTokenizer.from_pretrained( "bigcode/starcoderbase-3b" ) vardecoder_model = AutoModelForCausalLM.from_pretrained( "ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16, device_map="auto" ) example = """{ "input": "What are the original name and data type of variables `a1`, `a2`, `k`, `j`, `i`?\n```\n_BYTE *__fastcall sub_4022CD(_BYTE *a1, __int64 a2)\n{\n_BYTE *result; // rax\n__int16 v4; // [rsp+1Ch] [rbp-14h]\nunsigned __int16 v5; // [rsp+1Eh] [rbp-12h]\nunsigned __int16 v6; // [rsp+20h] [rbp-10h]\nunsigned __int16 v7; // [rsp+22h] [rbp-Eh]\nunsigned int k; // [rsp+24h] [rbp-Ch]\nunsigned int j; // [rsp+28h] [rbp-8h]\nunsigned int i; // [rsp+2Ch] [rbp-4h]\n\nfor ( i = 0; i <= 2; ++i )\n{\nfor ( j = 0; j <= 0x3F; ++j )\n{\nfor ( k = 0; k <= 3; ++k )\n{\n*(&v4 + k) = *(_WORD *)(a2 + 2 * (k + 4 * j + ((unsigned __int64)i << 8)));\n*(&v4 + k) += (*(&v4 + k) >> 15) & 0xD01;\n*(&v4 + k) = ((((unsigned __int16)*(&v4 + k) << 10) + 1664) / 0xD01u) & 0x3FF;\n}\n*a1 = v4;\na1[1] = (4 * v5) | HIBYTE(v4);\na1[2] = (16 * v6) | (v5 >> 6);\na1[3] = ((_BYTE)v7 << 6) | (v6 >> 4);\nresult = a1 + 4;\na1[4] = v7 >> 2;\na1 += 5;\n}\n}\nreturn result;\n}\n```", "output": "a1: r, uint8_t*\na2: a, const polyvec*\nk: t, uint16_t\nj: -, -\ni: k, unsigned int", "funname": "pqcrystals_kyber768_ref_polyvec_compress", "bin": "6ea440a6c772bc0d6a6089c9ff33ae31da13daf3b72acbe175674b0bb21987ed", "proj": "pq-crystals/kyber", "cluster_var": { "array": [ [ "k", "j" ] ] } }""" @spaces.GPU def infer(var_name, code): splitcode = code.splitlines() comments = prep_decompiled.extract_comments(splitcode) sig = prep_decompiled.parse_signature(splitcode) print(f"comments={comments} sig={sig}") #line = json.loads(input) #first_token = line["output"].split(":")[0] prompt = code + var_name + ":" input_ids = tokenizer.encode(prompt, return_tensors="pt").cuda()[:, : 8192 - 1024] output = vardecoder_model.generate( input_ids=input_ids, max_new_tokens=1024, num_beams=4, num_return_sequences=1, do_sample=False, early_stopping=False, pad_token_id=0, eos_token_id=0, )[0] output = tokenizer.decode( output[input_ids.size(1) :], skip_special_tokens=True, clean_up_tokenization_spaces=True, ) output = var_name + ":" + output return output demo = gr.Interface( fn=infer, inputs=[ gr.Text(label="First Token", value="a1"), gr.Textbox(lines=10, value=json.loads(example)['input']), ], outputs=gr.Text(label="Var Decoder Output"), ) demo.launch()